Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2025, 7(3); doi: 10.25236/IJFM.2025.070308.

Application of Salivary Biomarkers in Malignant Transformation of Oral Potentially Malignant Disorders

Author(s)

Ruoshui Yan, Shuo Li, Fangyuan Wang

Corresponding Author:
Fangyuan Wang
Affiliation(s)

Department of Stomatology, Zunyi Medical University, Zunyi, China

Abstract

Oral cancer is a major global health challenge, with its incidence and mortality rates rising over recent decades. Early detection and accurate diagnosis are crucial. Oral potentially malignant disorders (OPMDs) are conditions that carry a risk of evolving into squamous cell carcinoma (SCC). Detecting the malignant transformation of OPMDs early is critical for effective prevention and management of SCC. Salivary biomarkers offer a non-invasive and convenient method for clinical diagnosis and prognosis of oral and even systemic diseases. This review explores various salivary biomarkers that differ between OPMDs and SCC, providing a foundation for future progress in the early diagnosis, treatment, and monitoring of cancer.

Keywords

OMPDs; MT; Saliva Biomarkers; OSCC

Cite This Paper

Ruoshui Yan, Shuo Li, Fangyuan Wang. Application of Salivary Biomarkers in Malignant Transformation of Oral Potentially Malignant Disorders. International Journal of Frontiers in Medicine (2025), Vol. 7, Issue 3: 55-64. https://doi.org/10.25236/IJFM.2025.070308.

References

[1] O Iocca, TP Sollecito, F Alawi, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head & neck, 2019, 42(3):539-555.

[2] Speight, P. M., Khurram, et al. (2018). Oral potentially malignant disorders: risk of progression to malignancy. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 125(6), 612-627. doi: 10.1016/j.oooo.2017.12.011.

[3] Warnakulasuriya S , Kujan O ,José M Aguirre-Urizar, et al. Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer[J].Oral Diseases, 2020.DOI:10.1111/ODI.13704.

[4] Babiuch K, Bednarczyk A, Gawlik K, et al. Evaluation of enzymatic and nonnon-enzymatic antioxidant status and biomarkers of oxidative stress in saliva of patients with oral squamous cell carcinoma and oral leukoplakia: a pilot study[J]. Acta Odontologica Scandinavica, 2019, 77(6): 408-418.

[5] Babiuch K, Kuśnierz-Cabala B, Kęsek B, et al. Evaluation of proinflammatory, NF-kappaB dependent cytokines: IL-1α, IL-6, IL-8, and TNF-α in tissue specimens and saliva of patients with oral squamous cell carcinoma and oral potentially malignant disorders[J]. Journal of clinical medicine, 2020, 9(3): 867.

[6] Oshin M, Kulkarni P G, Deepthi G, et al. Salivary and Serum Interleukin-6: A Credible Marker for Predicting Oral Leukoplakia and Oral Squamous Cell Carcinoma by Enzyme-Linked Immunosorbent Assay (ELISA)[J]. Cureus, 2024, 16(4).

[7] Dikova V , Jantus-Lewintre E , Bagan J .Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma[J].Journal of clinical medicine, 10(8):1658[2024-09-22].DOI:10. 3390/jcm10081658.

[8] Sridharan G, Ramani P, Patankar S, et al. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma[J]. Journal of Oral Pathology & Medicine, 2019, 48(4): 299-306.

[9] Kang Y, Chen J, Li X, et al. Salivary KLK5 and uPA are potential biomarkers for malignant transformation of OLK and OLP[J]. Cancer Biomarkers, 2021, 31(4): 317-328.

[10] Wei J, Xie G, Zhou Z, et al. Salivary metabolite signatures of oral cancer and leukoplakia[J]. International journal of cancer, 2011, 129(9): 2207-2217.

[11] Wang K , Shen Y , Xu J ,et al.Evaluation of synuclein-γ levels by novel monoclonal antibody in saliva and cancer tissues from oral squamous cell carcinoma patients[J].Neoplasma, 2020, 67(3).DOI:10.4149/neo_2020_190619N523.

[12] Sharma, Vipra., Bandyopadhyay, Sabyasachi., et al. Label-Free Proteomics of Oral Mucosa Tissue to Identify Potential Biomarkers That Can Flag Predilection of Precancerous Lesions to Oral Cell Carcinoma: A Preliminary Study. Disease markers, 2023.

[13] Michailidou E, Tzimagiorgis G, Chatzopoulou F, et al. Salivary mRNA markers having the potential to detect oral squamous cell carcinoma segregated from oral leukoplakia with dysplasia[J]. Cancer Epidemiology, 2016, 43: 112-118.

[14] Uma Maheswari T N, Nivedhitha M S, Ramani P. Expression profile of salivary micro RNA-21 and 31 in oral potentially malignant disorders[J]. Brazilian oral research, 2020, 34.

[15] Zhao S Y, Wang J, Ouyang S B, et al. Salivary circular RNAs Hsa_Circ_0001874 and Hsa_Circ_0001971 as novel biomarkers for the diagnosis of oral squamous cell carcinoma[J]. Cellular Physiology and Biochemistry, 2018, 47(6): 2511-2521.

[16] Shah K, Patel S, Modi B, et al. Uncovering the potential of CD 44v/SYNE 1/miR34a axis in salivary fluids of oral cancer patients[J]. Journal of Oral Pathology & Medicine, 2018, 47(4): 345-352.

[17] Tantray S, Sharma S, Prabhat K, et al. Salivary metabolite signatures of oral cancer and leukoplakia through gas chromatography‒-mass spectrometry[J]. Journal of Oral and Maxillofacial Pathology: JOMFP, 2022, 26(1): 31.

[18] Hashimoto K, Shimizu D, Hirabayashi S, et al. Changes in oral microbial profiles associated with oral squamous cell carcinoma vs leukoplakia[J]. Journal of Investigative and Clinical Dentistry, 2019, 10(4): e12445.

[19] Koh J, Kurago Z B. Expanded expression of toll-like receptor 2 in proliferative verrucous leukoplakia[J]. Head and Neck Pathology, 2019, 13(4): 635-642.

[20] Gouvêa A F, Vargas P A, Coletta R D, et al. Clinicopathological features and immunohistochemical expression of p53, Ki‐67, Mcm‐2 and Mcm‐5 in proliferative verrucous leukoplakia[J]. Journal of oral pathology & medicine, 2010, 39(6): 447-452.

[21] Gouvêa A F, Santos Silva A R, Speight P M, et al. High incidence of DNA ploidy abnormalities and increased M cm2 expression may predict malignant change in oral proliferative verrucous leukoplakia[J]. Histopathology, 2013, 62(4): 551-562.

[22] Rintala M, Vahlberg T, Salo T, et al. Proliferative verrucous leukoplakia and its tumor markers: Systematic review and meta‐analysis[J]. Head & Neck, 2019, 41(5): 1499-1507.

[23] Herreros-Pomares A, Hervás D, Bagan‐Debon L, et al. Oral cancers preceded by proliferative verrucous leukoplakia exhibit distinctive molecular features[J]. Oral Diseases, 2023.

[24] Kresty L A, Mallery S R, Knobloch T J, et al. Frequent alterations of p16INK4a and p14ARF in oral proliferative verrucous leukoplakia[J]. Cancer epidemiology biomarkers & prevention, 2008, 17(11): 3179-3187.

[25] Goyal G. Comparison of salivary and serum alkaline phosphates level and lactate dehydrogenase levels in patients with tobacco related oral lesions with healthy subjects-A step towardds early diagnosis[J]. Asian Pacific Journal of Cancer Prevention: APJCP, 2020, 21(4): 983.

[26] Sridharan G, Ramani P, Patankar S, et al. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma[J]. Journal of Oral Pathology & Medicine, 2019, 48(4): 299-306.

[27] Meera S, Sarangarajan R, Rajkumar K. 8-Isoprostane: a salivary oxidative stress biomarker for oral submucous fibrosis and oral squamous cell carcinoma[J]. Journal of Oral and Maxillofacial Pathology, 2020, 24(2): 279-284.

[28] Mantri T, Male V, Yadav R, et al. Study of the role of salivary lactate dehydrogenase in habitual tobacco chewers, oral submucous fibrosis and oral cancer as a biomarker[J]. The Journal of Contemporary Dental Practice, 2019, 20(8): 970-973.

[29] Moorthy A, Venugopal D C, Shyamsundar V, et al. Identification of EGFR as a biomarker in saliva and buccal cells from oral submucous fibrosis patients—a baseline study[J]. Diagnostics, 2022, 12(8): 1935.

[30] Sabarathinam, Jembulingam, Sreedevi Dharman, and J. Selvaraj. "Combination Assay for Tumor Markers in Saliva of Potentially Malignant Disorders and Oral Squamous Cell Carcinoma." Journal of Pharmaceutical Research International 32.18 (2020): 36-45.

[31] Punyani S R, Sathawane R S. Salivary level of interleukin-8 in oral precancer and oral squamous cell carcinoma[J]. Clinical oral investigations, 2013, 17: 517-524

[32] SHAFIQ N, AKRAM S, KHAN T A L I, et al. Oral Submucous Fibrosis Patients Expressed Hypoxia Inducible Factor-1α (HIF-1α) in Saliva: A Biomarker for Detection of Malignant Transformation[J]. Pakistan Journal of Medical Sciences, 2022, 16: 798-802.

[33] Pezelj-Ribaric S, Prso I B, Abram M, et al. Salivary levels of tumor necrosis factor-α in oral lichen planus[J]. Mediators of Inflammation, 2004, 13: 131-133.

[34] Mansourian A, Shanbehzadeh N, Kia S J, et al. Increased salivary aldehyde dehydrogenase 1 in nonnon-reticular oral lichen planus[J]. Anais Brasileiros de Dermatologia, 2017, 92: 168-171.

[35] Zisis V, Giannakopoulos N N, Schmitter M, et al. Cancer Stem Cells' Biomarker ALDH1&2 Increased Expression in Erosive Oral Lichen Planus Compared to Oral Leukoplakia[J]. Cureus, 2023, 15(8).

[36] Honarmand M, Saravani R, Farhad-Mollashahi L, et al. Salivary Lactate Dehydrogenase, C-Reactive Protein, and Cancer Antigen 125 Levels in Patients with Oral Lichen Planus and Oral Squamous Cell Carcinoma[J]. International Journal of Cancer Management, 2021, 14(3).

[37] 39Tvarijonaviciute A, Aznar‐Cayuela C, Rubio C P, et al. Evaluation of salivary oxidate stress biomarkers, nitric oxide and C‐reactive protein in patients with oral lichen planus and burning mouth syndrome[J]. Journal of oral pathology & medicine, 2017, 46(5): 387-392.

[38] Ishikawa S, Sugimoto M, Edamatsu K, et al. Discrimination of oral squamous cell carcinoma from oral lichen planus by salivary metabolomics[J]. Oral Diseases, 2020, 26(1): 35-42.

[39] Lisa Cheng Y S, Jordan L, Gorugantula L M, et al. Salivary interleukin‐6 and‐8 in patients with oral cancer and patients with chronic oral inflammatory diseases[J]. Journal of periodontology, 2014, 85(7): 956-965.

[40] J Shan, Z Sun, J Yang, et al. "Discovery and preclinical validation of proteomic biomarkers in saliva for early detection of oral squamous cell carcinomas." Oral diseases 25.1 (2019): 97-107.

[41] Ghallab N A, Shaker O G. Serum and salivary levels of chemerin and MMP-9 in oral squamous cell carcinoma and oral premalignant lesions[J]. Clinical oral investigations, 2017, 21: 937-947.

[42] Mirzaii-Dizgah I, Agha-Hosseini F, Mahboobi N, et al. Serum and Saliva MMP-3 in patients with OLP and oral SCC[J]. The Journal of Contemporary Dental Practice, 2015, 16: 107-111.

[43] Nosratzehi, Tahereh, Ebrahim Alijani, and Marziyeh Moodi. "Salivary MMP-1, MMP-2, MMP-3 and MMP-13 levels in patients with oral lichen planus and squamous cell carcinoma." Asian Pacific journal of cancer prevention: APJCP 18.7 (2017): 1947.

[44] Cheng Y S L, Rees T, Jordan L, et al. Salivary endothelin-1 potential for detecting oral cancer in patients with oral lichen planus or oral cancer in remission[J]. Oral oncology, 2011, 47(12): 1122-1126.

[45] Totan A, Miricescu D, Parlatescu I, et al. Possible salivary and serum biomarkers for oral lichen planus[J]. Biotechnic & histochemistry, 2015, 90(7): 552-558.

[46] Momen-Heravi, F., et al. "Genomewide study of salivary microRNAs for detection of oral cancer." Journal of dental research 93.7_suppl (2014): 86S-93S.

[47] Aghbari S M H, Gaafar S M, Shaker O G, et al. Evaluating the accuracy of microRNA27b and microRNA137 as biomarkers of activity and potential malignant transformation in oral lichen planus patients[J]. Archives of Dermatological Research, 2018, 310: 209-220.

[48] Cortés-Ramírez D A, Rodríguez-Tojo M J, Gainza-Cirauqui M L, et al. Overexpression of cyclooxygenase-2 as a biomarker in different subtypes of the oral lichenoid disease[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2010, 110(6): 738-743.

[49] Dancyger A, Heard V, Huang B, et al. Malignant transformation of actinic cheilitis: A systematic review of observational studies[J]. Journal of investigative and clinical dentistry, 2018, 9(4): e12343.

[50] Souza L R, Fonseca‐Silva T, Santos C C O, et al. Association of mast cell, eosinophil leucocyte and microvessel densities in actinic cheilitis and lip squamous cell carcinoma[J]. Histopathology, 2010, 57(6): 796-805.

[51] Souza L R, Fonseca‐Silva T, Pereira C S, et al. Immunohistochemical analysis of p53, APE1, hMSH2 and ERCC1 proteins in actinic cheilitis and lip squamous cell carcinoma[J]. Histopathology, 2011, 58(3): 352-360.

[52] Ma Y, Ren Y, Dai Z J, et al. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients[J]. Advances in Clinical and Experimental Medicine, 2017, 26(3): 421-426.