International Journal of Frontiers in Medicine, 2025, 7(3); doi: 10.25236/IJFM.2025.070308.
Ruoshui Yan, Shuo Li, Fangyuan Wang
Department of Stomatology, Zunyi Medical University, Zunyi, China
Oral cancer is a major global health challenge, with its incidence and mortality rates rising over recent decades. Early detection and accurate diagnosis are crucial. Oral potentially malignant disorders (OPMDs) are conditions that carry a risk of evolving into squamous cell carcinoma (SCC). Detecting the malignant transformation of OPMDs early is critical for effective prevention and management of SCC. Salivary biomarkers offer a non-invasive and convenient method for clinical diagnosis and prognosis of oral and even systemic diseases. This review explores various salivary biomarkers that differ between OPMDs and SCC, providing a foundation for future progress in the early diagnosis, treatment, and monitoring of cancer.
OMPDs; MT; Saliva Biomarkers; OSCC
Ruoshui Yan, Shuo Li, Fangyuan Wang. Application of Salivary Biomarkers in Malignant Transformation of Oral Potentially Malignant Disorders. International Journal of Frontiers in Medicine (2025), Vol. 7, Issue 3: 55-64. https://doi.org/10.25236/IJFM.2025.070308.
[1] O Iocca, TP Sollecito, F Alawi, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head & neck, 2019, 42(3):539-555.
[2] Speight, P. M., Khurram, et al. (2018). Oral potentially malignant disorders: risk of progression to malignancy. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 125(6), 612-627. doi: 10.1016/j.oooo.2017.12.011.
[3] Warnakulasuriya S , Kujan O ,José M Aguirre-Urizar, et al. Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer[J].Oral Diseases, 2020.DOI:10.1111/ODI.13704.
[4] Babiuch K, Bednarczyk A, Gawlik K, et al. Evaluation of enzymatic and nonnon-enzymatic antioxidant status and biomarkers of oxidative stress in saliva of patients with oral squamous cell carcinoma and oral leukoplakia: a pilot study[J]. Acta Odontologica Scandinavica, 2019, 77(6): 408-418.
[5] Babiuch K, Kuśnierz-Cabala B, Kęsek B, et al. Evaluation of proinflammatory, NF-kappaB dependent cytokines: IL-1α, IL-6, IL-8, and TNF-α in tissue specimens and saliva of patients with oral squamous cell carcinoma and oral potentially malignant disorders[J]. Journal of clinical medicine, 2020, 9(3): 867.
[6] Oshin M, Kulkarni P G, Deepthi G, et al. Salivary and Serum Interleukin-6: A Credible Marker for Predicting Oral Leukoplakia and Oral Squamous Cell Carcinoma by Enzyme-Linked Immunosorbent Assay (ELISA)[J]. Cureus, 2024, 16(4).
[7] Dikova V , Jantus-Lewintre E , Bagan J .Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma[J].Journal of clinical medicine, 10(8):1658[2024-09-22].DOI:10. 3390/jcm10081658.
[8] Sridharan G, Ramani P, Patankar S, et al. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma[J]. Journal of Oral Pathology & Medicine, 2019, 48(4): 299-306.
[9] Kang Y, Chen J, Li X, et al. Salivary KLK5 and uPA are potential biomarkers for malignant transformation of OLK and OLP[J]. Cancer Biomarkers, 2021, 31(4): 317-328.
[10] Wei J, Xie G, Zhou Z, et al. Salivary metabolite signatures of oral cancer and leukoplakia[J]. International journal of cancer, 2011, 129(9): 2207-2217.
[11] Wang K , Shen Y , Xu J ,et al.Evaluation of synuclein-γ levels by novel monoclonal antibody in saliva and cancer tissues from oral squamous cell carcinoma patients[J].Neoplasma, 2020, 67(3).DOI:10.4149/neo_2020_190619N523.
[12] Sharma, Vipra., Bandyopadhyay, Sabyasachi., et al. Label-Free Proteomics of Oral Mucosa Tissue to Identify Potential Biomarkers That Can Flag Predilection of Precancerous Lesions to Oral Cell Carcinoma: A Preliminary Study. Disease markers, 2023.
[13] Michailidou E, Tzimagiorgis G, Chatzopoulou F, et al. Salivary mRNA markers having the potential to detect oral squamous cell carcinoma segregated from oral leukoplakia with dysplasia[J]. Cancer Epidemiology, 2016, 43: 112-118.
[14] Uma Maheswari T N, Nivedhitha M S, Ramani P. Expression profile of salivary micro RNA-21 and 31 in oral potentially malignant disorders[J]. Brazilian oral research, 2020, 34.
[15] Zhao S Y, Wang J, Ouyang S B, et al. Salivary circular RNAs Hsa_Circ_0001874 and Hsa_Circ_0001971 as novel biomarkers for the diagnosis of oral squamous cell carcinoma[J]. Cellular Physiology and Biochemistry, 2018, 47(6): 2511-2521.
[16] Shah K, Patel S, Modi B, et al. Uncovering the potential of CD 44v/SYNE 1/miR34a axis in salivary fluids of oral cancer patients[J]. Journal of Oral Pathology & Medicine, 2018, 47(4): 345-352.
[17] Tantray S, Sharma S, Prabhat K, et al. Salivary metabolite signatures of oral cancer and leukoplakia through gas chromatography‒-mass spectrometry[J]. Journal of Oral and Maxillofacial Pathology: JOMFP, 2022, 26(1): 31.
[18] Hashimoto K, Shimizu D, Hirabayashi S, et al. Changes in oral microbial profiles associated with oral squamous cell carcinoma vs leukoplakia[J]. Journal of Investigative and Clinical Dentistry, 2019, 10(4): e12445.
[19] Koh J, Kurago Z B. Expanded expression of toll-like receptor 2 in proliferative verrucous leukoplakia[J]. Head and Neck Pathology, 2019, 13(4): 635-642.
[20] Gouvêa A F, Vargas P A, Coletta R D, et al. Clinicopathological features and immunohistochemical expression of p53, Ki‐67, Mcm‐2 and Mcm‐5 in proliferative verrucous leukoplakia[J]. Journal of oral pathology & medicine, 2010, 39(6): 447-452.
[21] Gouvêa A F, Santos Silva A R, Speight P M, et al. High incidence of DNA ploidy abnormalities and increased M cm2 expression may predict malignant change in oral proliferative verrucous leukoplakia[J]. Histopathology, 2013, 62(4): 551-562.
[22] Rintala M, Vahlberg T, Salo T, et al. Proliferative verrucous leukoplakia and its tumor markers: Systematic review and meta‐analysis[J]. Head & Neck, 2019, 41(5): 1499-1507.
[23] Herreros-Pomares A, Hervás D, Bagan‐Debon L, et al. Oral cancers preceded by proliferative verrucous leukoplakia exhibit distinctive molecular features[J]. Oral Diseases, 2023.
[24] Kresty L A, Mallery S R, Knobloch T J, et al. Frequent alterations of p16INK4a and p14ARF in oral proliferative verrucous leukoplakia[J]. Cancer epidemiology biomarkers & prevention, 2008, 17(11): 3179-3187.
[25] Goyal G. Comparison of salivary and serum alkaline phosphates level and lactate dehydrogenase levels in patients with tobacco related oral lesions with healthy subjects-A step towardds early diagnosis[J]. Asian Pacific Journal of Cancer Prevention: APJCP, 2020, 21(4): 983.
[26] Sridharan G, Ramani P, Patankar S, et al. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma[J]. Journal of Oral Pathology & Medicine, 2019, 48(4): 299-306.
[27] Meera S, Sarangarajan R, Rajkumar K. 8-Isoprostane: a salivary oxidative stress biomarker for oral submucous fibrosis and oral squamous cell carcinoma[J]. Journal of Oral and Maxillofacial Pathology, 2020, 24(2): 279-284.
[28] Mantri T, Male V, Yadav R, et al. Study of the role of salivary lactate dehydrogenase in habitual tobacco chewers, oral submucous fibrosis and oral cancer as a biomarker[J]. The Journal of Contemporary Dental Practice, 2019, 20(8): 970-973.
[29] Moorthy A, Venugopal D C, Shyamsundar V, et al. Identification of EGFR as a biomarker in saliva and buccal cells from oral submucous fibrosis patients—a baseline study[J]. Diagnostics, 2022, 12(8): 1935.
[30] Sabarathinam, Jembulingam, Sreedevi Dharman, and J. Selvaraj. "Combination Assay for Tumor Markers in Saliva of Potentially Malignant Disorders and Oral Squamous Cell Carcinoma." Journal of Pharmaceutical Research International 32.18 (2020): 36-45.
[31] Punyani S R, Sathawane R S. Salivary level of interleukin-8 in oral precancer and oral squamous cell carcinoma[J]. Clinical oral investigations, 2013, 17: 517-524
[32] SHAFIQ N, AKRAM S, KHAN T A L I, et al. Oral Submucous Fibrosis Patients Expressed Hypoxia Inducible Factor-1α (HIF-1α) in Saliva: A Biomarker for Detection of Malignant Transformation[J]. Pakistan Journal of Medical Sciences, 2022, 16: 798-802.
[33] Pezelj-Ribaric S, Prso I B, Abram M, et al. Salivary levels of tumor necrosis factor-α in oral lichen planus[J]. Mediators of Inflammation, 2004, 13: 131-133.
[34] Mansourian A, Shanbehzadeh N, Kia S J, et al. Increased salivary aldehyde dehydrogenase 1 in nonnon-reticular oral lichen planus[J]. Anais Brasileiros de Dermatologia, 2017, 92: 168-171.
[35] Zisis V, Giannakopoulos N N, Schmitter M, et al. Cancer Stem Cells' Biomarker ALDH1&2 Increased Expression in Erosive Oral Lichen Planus Compared to Oral Leukoplakia[J]. Cureus, 2023, 15(8).
[36] Honarmand M, Saravani R, Farhad-Mollashahi L, et al. Salivary Lactate Dehydrogenase, C-Reactive Protein, and Cancer Antigen 125 Levels in Patients with Oral Lichen Planus and Oral Squamous Cell Carcinoma[J]. International Journal of Cancer Management, 2021, 14(3).
[37] 39Tvarijonaviciute A, Aznar‐Cayuela C, Rubio C P, et al. Evaluation of salivary oxidate stress biomarkers, nitric oxide and C‐reactive protein in patients with oral lichen planus and burning mouth syndrome[J]. Journal of oral pathology & medicine, 2017, 46(5): 387-392.
[38] Ishikawa S, Sugimoto M, Edamatsu K, et al. Discrimination of oral squamous cell carcinoma from oral lichen planus by salivary metabolomics[J]. Oral Diseases, 2020, 26(1): 35-42.
[39] Lisa Cheng Y S, Jordan L, Gorugantula L M, et al. Salivary interleukin‐6 and‐8 in patients with oral cancer and patients with chronic oral inflammatory diseases[J]. Journal of periodontology, 2014, 85(7): 956-965.
[40] J Shan, Z Sun, J Yang, et al. "Discovery and preclinical validation of proteomic biomarkers in saliva for early detection of oral squamous cell carcinomas." Oral diseases 25.1 (2019): 97-107.
[41] Ghallab N A, Shaker O G. Serum and salivary levels of chemerin and MMP-9 in oral squamous cell carcinoma and oral premalignant lesions[J]. Clinical oral investigations, 2017, 21: 937-947.
[42] Mirzaii-Dizgah I, Agha-Hosseini F, Mahboobi N, et al. Serum and Saliva MMP-3 in patients with OLP and oral SCC[J]. The Journal of Contemporary Dental Practice, 2015, 16: 107-111.
[43] Nosratzehi, Tahereh, Ebrahim Alijani, and Marziyeh Moodi. "Salivary MMP-1, MMP-2, MMP-3 and MMP-13 levels in patients with oral lichen planus and squamous cell carcinoma." Asian Pacific journal of cancer prevention: APJCP 18.7 (2017): 1947.
[44] Cheng Y S L, Rees T, Jordan L, et al. Salivary endothelin-1 potential for detecting oral cancer in patients with oral lichen planus or oral cancer in remission[J]. Oral oncology, 2011, 47(12): 1122-1126.
[45] Totan A, Miricescu D, Parlatescu I, et al. Possible salivary and serum biomarkers for oral lichen planus[J]. Biotechnic & histochemistry, 2015, 90(7): 552-558.
[46] Momen-Heravi, F., et al. "Genomewide study of salivary microRNAs for detection of oral cancer." Journal of dental research 93.7_suppl (2014): 86S-93S.
[47] Aghbari S M H, Gaafar S M, Shaker O G, et al. Evaluating the accuracy of microRNA27b and microRNA137 as biomarkers of activity and potential malignant transformation in oral lichen planus patients[J]. Archives of Dermatological Research, 2018, 310: 209-220.
[48] Cortés-Ramírez D A, Rodríguez-Tojo M J, Gainza-Cirauqui M L, et al. Overexpression of cyclooxygenase-2 as a biomarker in different subtypes of the oral lichenoid disease[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2010, 110(6): 738-743.
[49] Dancyger A, Heard V, Huang B, et al. Malignant transformation of actinic cheilitis: A systematic review of observational studies[J]. Journal of investigative and clinical dentistry, 2018, 9(4): e12343.
[50] Souza L R, Fonseca‐Silva T, Santos C C O, et al. Association of mast cell, eosinophil leucocyte and microvessel densities in actinic cheilitis and lip squamous cell carcinoma[J]. Histopathology, 2010, 57(6): 796-805.
[51] Souza L R, Fonseca‐Silva T, Pereira C S, et al. Immunohistochemical analysis of p53, APE1, hMSH2 and ERCC1 proteins in actinic cheilitis and lip squamous cell carcinoma[J]. Histopathology, 2011, 58(3): 352-360.
[52] Ma Y, Ren Y, Dai Z J, et al. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients[J]. Advances in Clinical and Experimental Medicine, 2017, 26(3): 421-426.