Welcome to Francis Academic Press

The Frontiers of Society, Science and Technology, 2021, 3(2); doi: 10.25236/FSST.2021.030211.

Designing Non-fluorinated Durable Stain-resistant Textiles

Author(s)

Yi Liang1, Yufan Feng2, Hengyi Zhang3

Corresponding Author:
Yi Liang
Affiliation(s)

1Department of Macromolecular Science, Fudan University, Shanghai 200433, China

2United World College of South East Asia (Dover), Singapore 139654, Singapore

3Chengdu Experimental Foreign Language School, Chengdu, Sichuan 611731, China

Abstract

Though being highly stain-resistant and durable, recently, the harmful effects of fluorinated chemicals on the environment and organisms have gained people’s attention. It has now become necessary to find non-fluorinated alternatives with comparable properties. Current research shows that non-fluorinated materials have achieved excellent hydrophobicity, but oleophobicity or stain-resistance is still difficult to reach.  In this review, the chemistry of hydrophobic materials, morphology control of textiles, and the enhancement of durability of coatings are respectively discussed and summarized with examples. The combination of these techniques would help develop better repellency. This review also attempts to elucidate and discuss the necessity to consider textile properties according to end-use requirements, the asymmetric wettability design to increase comfort and the possible directions for future research on designing non-fluorinated durable stain-resistant textiles.

Keywords

Non-fluorinated, hydrophobic, durability, stain-resistance, repellency, textiles, fabrics, contact angle

Cite This Paper

Yi Liang, Yufan Feng, Hengyi Zhang. Designing Non-fluorinated Durable Stain-resistant Textiles. The Frontiers of Society, Science and Technology (2021) Vol. 3, Issue 2: 60-83. https://doi.org/10.25236/FSST.2021.030211.

References

[1] Zhang, Z., Ge, B., Men, X., & Li, Y. (2016). Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 490, 182-188.

[2] Loghin, C., Ciobanu, L., Ionesi, D., Loghin, E., & Cristian, I. (2018). Introduction to waterproof and water repellent textiles. Waterproof and Water Repellent Textiles and Clothing, 3–24. doi:10.1016/b978-0-08-101212-3.00001-0 

[3] https://www.chemistryworld.com/features/a-persistent-perfluorinated-problem/3010817.article

[4] https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/10481/report/0

[5] Schellenberger, S., Hill, P. J., Levenstam, O., Gillgard, P., Cousins, I. T., Taylor, M., & Blackburn, R. S. (2019). Highly fluorinated chemicals in functional textiles can be replaced by re-evaluating liquid repellency and end-user requirements. Journal of cleaner production, 217, 134-143.

[6] https://www.pfasfree.org.uk/about-pfas/pfas-science-the-basics

[7] Bhushan, B., & Jung, Y. C. (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, 56(1), 1-108.

[8] Schellenberger, S., Gillgard, P., Stare, A., Hanning, A., Levenstam, O., Roos, S., & Cousins, I. T. (2018). Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics. Chemosphere, 193, 675-684.

[9] Honda, K., Morita, M., Otsuka, H., & Takahara, A. (2005). Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films. Macromolecules, 38(13), 5699–5705.

[10] ZISMAN, W. A. (1964). Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. Contact Angle, Wettability, and Adhesion, 1–51.

[11] Holmquist, H., Schellenberger, S., van Der Veen, I., Peters, G. M., Leonards, P. E. G., & Cousins, I. T. (2016). Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environment international, 91, 251-264.

[12] Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988-994.

[13] Kota, A. K., Mabry, J. M., & Tuteja, A. (2013). Superoleophobic surfaces: design criteria and recent studies. Surface Innovations, 1(2), 71-83.

[14] Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday society, 40, 546-551.

[15] Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., & Barthlott, W. (2011). Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein journal of nanotechnology, 2(1), 152-161.

[16] Su, Y., Ji, B., Huang, Y., & Hwang, K. C. (2010). Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir, 26(24), 18926-18937.

[17] Bhushan, B. (2018). Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes. In Biomimetics (pp. 51-80). Springer, Cham.

[18] Li, S., Huang, J., Chen, Z., Chen, G., & Lai, Y. (2017). A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5(1), 31-55.

[19] Miwa, M. , Nakajima, A. , Fujishima, A. , Hashimoto, K. , & Watanabe, T. . (2000). Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16(13), 5754-5760.

[20] Liu, K., & Jiang, L. (2012). Bio-inspired self-cleaning surfaces. Annual Review of Materials Research, 42, 231-263.

[21] Wu, J., Li, J., Wang, Z., Yu, M., Jiang, H., Li, L., & Zhang, B. (2015). Designing breathable superhydrophobic cotton fabrics. RSC Advances, 5(35), 27752-27758.

[22] Kim, T., Kang, H., & Yoon, N. (2017). Synthesis of non-fluorinated paraffinic water repellents and application properties on textile fabrics. Fibers and Polymers, 18(2), 285-289.

[23] Schindler, W. D., & Hauser, P. J. (2004). Chemical finishing of textiles. Elsevier.

[24] Manatunga, D. C., de Silva, R. M., & de Silva, K. N. (2016). Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Applied Surface Science, 360, 777-788.

[25] Arfaoui, M. A., Dolez, P. I., Dubé, M., & David, É. (2019). Preparation of a hydrophobic recycled jute-based nonwoven using a titanium dioxide/stearic acid coating. The Journal of The Textile Institute, 110(1), 16-25.

[26] Chauhan, P., Kumar, A., & Bhushan, B. (2019). Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique. Journal of colloid and interface science, 535, 66-74.

[27] Gao, Q., Zhu, Q., Guo, Y., & Yang, C. Q. (2009). Formation of highly hydrophobic surfaces on cotton and polyester fabrics using silica sol nanoparticles and nonfluorinated alkylsilane. Industrial & Engineering Chemistry Research, 48(22), 9797-9803.

[28] Bae, G. Y., Jang, J., Jeong, Y. G., Lyoo, W. S., & Min, B. G. (2010). Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups. Journal of colloid and interface science, 344(2), 584-587.

[29] Guo, N., Chen, Y., Rao, Q., Yin, Y., & Wang, C. (2015). Fabrication of durable hydrophobic cellulose surface from silane-functionalized silica hydrosol via electrochemically assisted deposition. Journal of Applied Polymer Science, 132(44).

[30] Jin, S., Park, Y., & Park, C. H. (2016). Preparation of breathable and superhydrophobic polyurethane electrospun webs with silica nanoparticles. Textile Research Journal, 86(17), 1816-1827.

[31] Ramaratnam, K., Tsyalkovsky, V., Klep, V., & Luzinov, I. (2007). Ultrahydrophobic textile surface via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer. Chemical communications, (43), 4510-4512.

[32] Sun, D., Wang, W., & Yu, D. (2016). Preparation of fluorine-free water repellent finishing via thiol-ene click reaction on cotton fabrics. Materials Letters, 185, 514-518.

[33] Mabry, J. M., Vij, A., Iacono, S. T., & Viers, B. D. (2008). Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angewandte Chemie International Edition, 47(22), 4137-4140.

[34] Sun, D., Wang, W., & Yu, D. (2017). Highly hydrophobic cotton fabrics prepared with fluorine-free functionalized silsesquioxanes. Cellulose, 24(10), 4519-4531.

[35] Jung, H., Kim, M. K., & Jang, S. (2020). Liquid-repellent textile surfaces using zirconium (Zr)-based porous materials and a polyhedral oligomeric silsesquioxane coating. Journal of Colloid and Interface Science, 563, 363-369.

[36] Li, S., Xie, H., Zhang, S., & Wang, X. (2007). Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chemical Communications, (46), 4857-4859.

[37] Artus, G. R., & Seeger, S. (2012). Scale-up of a reaction chamber for superhydrophobic coatings based on silicone nanofilaments. Industrial & Engineering Chemistry Research, 51(6), 2631-2636.

[38] Mehta, P. N. (2006). Hyperbranched polymers: unique design tool for coatings. Surface Coatings International Part B: Coatings Transactions, 89(4), 333-342.

[39] Tang, W., Huang, Y., Meng, W., & Qing, F. L. (2010). Synthesis of fluorinated hyperbranched polymers capable as highly hydrophobic and oleophobic coating materials. European Polymer Journal, 46(3), 506-518.

[40] Hu, J., Nie, K., Meng, Q., & Zheng, G. (2008). U.S. Patent Application No. 11/748,892.

[41] https://www.rudolf.de/en/technology/bionic-finish-eco/

[42] Zhao, J., Zhu, W., Wang, X., Liu, L., Yu, J., & Ding, B. (2019). Fluorine-Free Waterborne Coating for Environmentally Friendly, Robustly Water-Resistant, and Highly Breathable Fibrous Textiles. ACS nano, 14(1), 1045-1054.

[43] Zahid, M., Mazzon, G., Athanassiou, A., & Bayer, I. S. (2019). Environmentally benign non-wettable textile treatments: A review of recent state-of-the-art. Advances in Colloid and Interface Science, 270, 216–250. doi:10.1016/j.cis.2019.06.001

[44] Chen, D., Mai, Z., Liu, X., Ye, D., Zhang, H., Yin, X., … Xu, W. (2018). UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose, 25(6), 3635–3647. doi:10.1007/s10570-018-1790-7

[45] Khajavi, R., & Berendjchi, A. (2014). Effect of Dicarboxylic Acid Chain Length on the Self-Cleaning Property of Nano-TiO2-Coated Cotton Fabrics. ACS Applied Materials & Interfaces, 6(21), 18795–18799. doi:10.1021/am504489u

[46] Attia, N. F., Moussa, M., Sheta, A. M. F., Taha, R., & Gamal, H. (2017). Effect of different nanoparticles based coating on the performance of textile properties. Progress in Organic Coatings, 104, 72–80. doi:10.1016/j.porgcoat.2016.12.007

[47] El-Shafei A, ElShemy M, Abou-Okeil A (2015) Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr Polym 118:83–90. https://doi.org/10.1016/j.carbpol.2014.11.007

[48] Hatami E, Hezavehi E, Zolgharnein P (2016) A study of carboxylic acids and nano-TiO2 effects on stress relaxation of cotton fabrics. J Text Inst 107:724–732. https://doi.org/10. 1080/00405000.2015.1061758

[49] Jiang X, Tian X, Gu J, Huang D, Yang Y (2011) Cotton fabric coated with nano TiO2-acrylate copolymer for photocatalytic self-cleaning by in situ suspension polymerization. Cellulose 123 Appl Surf Sci 257:8451–8456. 

[50] Harifi T, Montazer M (2012) Past, present and future prospects of cotton cross-linking: new insight into nanoparticles. Carbohydr Polym 88:1125–1140. 

[51] Afzal, S., Daoud, W. A., & Langford, S. J. (2014). Superhydrophobic and photocatalytic self-cleaning cotton. J. Mater. Chem. A, 2(42), 18005–18011. 

[52] El-Naggar ME, Shaheen TI, Zaghloul S, El-Rafie MH, Hebeish A (2016) Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind Eng Chem Res 55:2661–2668. 

[53] Fakin D, Veronovski N, Ojstrsˇek A, Bozˇicˇ M (2012) Synthesis of TiO2–SiO2 colloid and its performance in reactive dyeing of cotton fabrics. Carbohydr Polym 88:992–1001. 

[54] Yang H, Zhu S, Pan N (2004) Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J Appl Polym 

[55] Yang, J., Xu, H., Zhang, L., Zhong, Y., Sui, X., & Mao, Z. (2017). Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics. Surface and Coatings Technology, 309, 149–154. 

[56] Xue, C.-H., Chen, J., Yin, W., Jia, S.-T., & Ma, J.-Z. (2012). Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, 258(7), 2468–2472. 

[57] Lee, H. Y., Park, H. K., Lee, Y. M., Kim, K., & Park, S. B. (2007). A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chemical Communications, (28), 2959-2961

[58] You, I.; Seo, Y. C.; Lee, H.  (2014 ) Material-independent fabrication of superhydrophobic surfaces by mussel-inspired polydopamine. RSC Adv. 10330-10333.

[59] Xue, C. H., Ji, X. Q., Zhang, J., Ma, J. Z., & Jia, S. T. (2015). Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating. Nanotechnology, 26(33), 335602.

[60] Gu S, Yang L, Huang W, Bu Y, Chen D, Huang J, et al. (2017) Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry. Cellulose 2017;24:2635–46. https://doi.org/10.1007/s10570-017-1274-1.

[61] Liu, Y., Pei, X., Liu, Z., Yu, B., Yan, P., & Zhou, F. (2015). Accelerating the healing of superhydrophobicity through photothermogenesis. Journal of Materials Chemistry A, 3(33), 17074-17079.

[62] Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of applied polymer science, 96(2), 557-569.

[63] Sas, I., Gorga, R. E., Joines, J. A., & Thoney, K. A. (2012). Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. Journal of Polymer Science Part B: Polymer Physics, 50(12), 824-845.

[64] Zhu, W., Zhao, J., Wang, X., Liu, X., Yu, J., & Ding, B. (2019). Facile fabrication of fluorine-free breathable poly (methylhydrosiloxane)/polyurethane fibrous membranes with enhanced water-resistant capability. Journal of colloid and interface science, 556, 541-548.

[65] Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.

[66] Wang, C., Hsu, C. H., & Lin, J. H. (2006). Scaling laws in electrospinning of polystyrene solutions. Macromolecules, 39(22), 7662-7672.

[67] Buruaga, L., González, A., Irusta, L., & Iruin, J. J. (2011). Production of hydrophobic surfaces in biodegradable and biocompatible polymers using polymer solution electrospinning. Journal of applied polymer science, 120(3), 1520-1524.

[68] Eda, G., Liu, J., & Shivkumar, S. (2007). Flight path of electrospun polystyrene solutions: Effects of molecular weight and concentration. Materials Letters, 61(7), 1451-1455.

[69] Zuo, W., Zhu, M., Yang, W., Yu, H., Chen, Y., & Zhang, Y. (2005). Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering & Science, 45(5), 704-709.

[70] Ma, M., Hill, R. M., Lowery, J. L., Fridrikh, S. V., & Rutledge, G. C. (2005). Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir, 21(12), 5549-5554.

[71] Moghe, A. K., & Gupta, B. S. (2008). Co-axial electrospinning for nanofiber structures: preparation and applications. Polymer Reviews, 48(2), 353-377.

[72] Li, X., Ding, B., Lin, J., Yu, J., & Sun, G. (2009). Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. The Journal of Physical Chemistry C, 113(47), 20452-20457.

[73] Sun, M., Li, X., Ding, B., Yu, J., & Sun, G. (2010). Mechanical and wettable behavior of polyacrylonitrile reinforced fibrous polystyrene mats. Journal of colloid and interface science, 347(1), 147-152.

[74] Zhan, N., Li, Y., Zhang, C., Song, Y., Wang, H., Sun, L., ... & Hong, X. (2010). A novel multinozzle electrospinning process for preparing superhydrophobic PS films with controllable bead-on-string/microfiber morphology. Journal of colloid and interface science, 345(2), 491-495.

[75] https://www.dupont.com/packaging-materials-and-solutions/tyvek-industrial-packaging.html

[76] Zhang, D., Xia, L., Xi, P., & Cheng, B. W. (2011). The Application and Researches of Flash Spinning Nonwoven. In Advanced Materials Research (Vol. 332, pp. 683-686). Trans Tech Publications Ltd.

[77] Batra, S. K., & Pourdeyhimi, B. (2012). Introduction to nonwovens technology. DEStech Publications, Inc.

[78] Zhu, T.; Cai, C.; Duan, C.T.; Zhai, S.; Liang, S.M.; Jin, Y.; Zhao, N.; Xu, J. (2015) Robust polypropylene fabrics super-repelling various liquids: A simple, rapid and scalable fabrication method by solvent swelling. ACS Appl. Mater. Interfaces 2015, 7, 13996–14003.) 

[79] Rahaman, M.N. (2007). Ceramic Processing. Boca Raton: CRC Press. pp. 242–244. ISBN 978-0-8493-7285-8.

[80] Li, B.C.; Zhang, J.P.; Wu, L.; Wang, A.Q. (2013)Durable superhydrophobic surfaces prepared by spray coating ofpolymerized organosilane/attapulgite nanocomposites. ChemPlusChem 2013, 78, 1503–1509.

[81] Caschera, D., Mezzi, A., Cerri, L., de Caro, T., Riccucci, C., Ingo, G. M., ... & Cortese, B. (2014). Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose, 21(1), 741-756.

[82] Xue, C. H., Guo, X. J., Zhang, M. M., Ma, J. Z., & Jia, S. T. (2015). Fabrication of robust superhydrophobic surfaces by modification of chemically roughened fibers via thiol–ene click chemistry. Journal of Materials Chemistry A, 3(43), 21797-21804.

[83] Pandiyaraj, K.N. and V. Selvarajan, (2008)Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. Journal of Materials Processing Technology, 2008. 199(1-3): p. 130-139.

[84] Rong, L., Liu, H., Wang, B., Mao, Z., Xu, H., Zhang, L., ... & Sui, X. (2019). Durable antibacterial and hydrophobic cotton fabrics utilizing enamine bonds. Carbohydrate polymers, 211, 173-180.

[85] Verho, T., Bower, C., Andrew, P., Franssila, S., Ikkala, O., & Ras, R. H. (2011). Mechanically durable superhydrophobic surfaces. Advanced materials, 23(5), 673-678.

[86] Zimmermann, J., Reifler, F. A., Fortunato, G., Gerhardt, L. C., & Seeger, S. (2008). A simple, one-step approach to durable and robust superhydrophobic textiles. Advanced Functional Materials, 18(22), 3662-3669.

[87] Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), 1-8.

[88] Neinhuis, C., & Barthlott, W. (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of botany, 79(6), 667-677.

[89] Bhushan, B., Nosonovsky, M., & Chae Jung, Y. (2007). Towards optimization of patterned superhydrophobic surfaces. Journal of the Royal Society Interface, 4(15), 643-648.

[90] Nosonovsky, M., & Bhushan, B. (2007). Biomimetic superhydrophobic surfaces: multiscale approach. Nano letters, 7(9), 2633-2637.

[91] Wang, Y., Shi, Y., Pan, L., Yang, M., Peng, L., Zong, S., ... & Yu, G. (2014). Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix. Nano letters, 14(8), 4803-4809.

[92] Zhou, H., Wang, H., Niu, H., Gestos, A., Wang, X., & Lin, T. (2012). Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Advanced materials, 24(18), 2409-2412.

[93] Ye, H., Zhu, L., Li, W., Liu, H., & Chen, H. (2017). Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles. ACS applied materials & interfaces, 9(1), 858-867.

[94] Mphahlele, K., S.S. Ray, & A. Kolesnikov, (2017)Self-Healing Polymeric Composite Material Design, Failure Analysis and Future Outlook: A Review. Polymers, 2017. 9(12) )

[95] Wu, D.Y., S. Meure, &D. Solomon, (2008)Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 2008. 33(5): p. 479-522.

[96] Wu, M., Ma, B., Pan, T., Chen, S., & Sun, J. (2016). Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties. Advanced Functional Materials, 26(4), 569-576.

[97] Wang, H., Zhou, H., Gestos, A., Fang, J., & Lin, T. (2013). Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS applied materials & interfaces, 5(20), 10221-10226.

[98] Wang, H., Zhou, H., Liu, S., Shao, H., Fu, S., Rutledge, G. C., & Lin, T. (2017). Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings. RSC advances, 7(54), 33986-33993.

[99] Li, D. W., Wang, H. Y., Liu, Y., Wei, D. S., & Zhao, Z. X. (2019). Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance. Chemical Engineering Journal, 367, 169-179.

[100] Wu, J., Li, J., Deng, B., Jiang, H., Wang, Z., Yu, M., ... & Li, Y. (2013). Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Scientific reports, 3, 2951.

[101] Liu, Y., Liu, Z., Liu, Y., Hu, H., Li, Y., Yan, P., ... & Zhou, F. (2015). One-step modification of fabrics with bioinspired [email protected] nanocapsules for robust and healable self-cleaning performance. Small, 11(4), 426-431.

[102] Kocić, A., Bizjak, M., Popović, D., Poparić, G. B., & Stanković, S. B. (2019). UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres. Journal of Cleaner Production.

[103] Broasca, G., Borcia, G., Dumitrascu, N., & Vrinceanu, N. (2013). Characterization of ZnO coated polyester fabrics for UV protection. Applied Surface Science, 279, 272–278

[104] Pisitsak, P., Tungsombatvisit, N., & Singhanu, K. (2018). Utilization of waste protein from Antarctic krill oil production and natural dye to impart durable UV-properties to cotton textiles. Journal of Cleaner Production, 174, 1215–1223. 

[105] R.P.S. Chakradhara, V.D. Kumara, J.L. Raob, B.J. Basua. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behavior. Appl. Surf. Sci., 257 (2011), pp. 8569-8575

[106] Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus, 2(1), 398.

[107] Geuskens, G. (1975). Photodegradation of polymers. In Comprehensive Chemical Kinetics (Vol. 14, pp. 333-424). Elsevier.

[108] Owis, A. A., Elzayat, M. Y. F., & Abdel-Baset, T. A. (2020). Characterization and Photoactivity of Cotton Loaded with ZnO NPs. Open Journal of Applied Sciences, 10(04), 111.

[109] Xue, C.-H., Yin, W., Zhang, P., Zhang, J., Ji, P.-T., & Jia, S.-T. (2013). UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 427, 7–12. 

[110] D.Y. Zhu, S.H. Wang, X.C. Zhou. Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A, 5 (2017), pp. 16467-16497

[111] U. Eduok, O. Faye, J. Szpunar. Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog. Org. Coat., 111 (2017), pp. 124-163

[112] Ren, G., Song, Y., Li, X., Wang, B., Zhou, Y., Wang, Y., … Zhu, X. (2018). A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property. Journal of Colloid and Interface Science, 522, 57–62. 

[113] Pan, G., Xiao, X., & Ye, Z. (2018). Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency. Surface and Coatings Technology. 

[114] Burman, G. W. (2014). Expectations of durable water repellent fabric finishes. An Account of the Project Work Carried Out for the Degree of BSc (Hon's) Retail Buying (Textiles). De Montfort University, Leicester, UK.

[115] Huang, W., Xing, Y., Yu, Y., Shang, S., & Dai, J. (2011). Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids. Applied Surface Science, 257(9), 4443-4448.

[116] Zimmermann, J., Reifler, F. A., Schrade, U., Artus, G. R., & Seeger, S. (2007). Long term environmental durability of a superhydrophobic silicone nanofilament coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 234-240.

[117] Callies, M., & Quéré, D. (2005). On water repellency. Soft matter, 1(1), 55-61.

[118] Sasaki, M., Kieda, N., Katayama, K., Takeda, K., & Nakajima, A. (2004). Processing and properties of transparent super-hydrophobic polymer film with low surface electric resistance. Journal of materials science, 39(11), 3717-3722.

[119] Raghavanpillai, A., Franco, V. A., & Meredith, W. E. (2012). Hydrophobic and oleophobic surface modification using gelling agents derived from amino acids. Journal of Fluorine Chemistry, 135, 187-194.

[120] Tang, Z., Hess, D. W., & Breedveld, V. (2015). Fabrication of oleophobic paper with tunable hydrophilicity by treatment with non-fluorinated chemicals. Journal of Materials Chemistry A, 3(28), 14651-14660.

[121] Tang, Z., Xie, L., Hess, D. W., & Breedveld, V. (2017). Fabrication of amphiphobic softwood and hardwood by treatment with non-fluorinated chemicals. Wood Science and Technology, 51(1), 97-113.

[122] Li, Z., & Rabnawaz, M. (2018). Oil-and water-resistant coatings for porous cellulosic substrates. ACS Applied Polymer Materials, 1(1), 103-111.

[123] Sheen, Y. C., Chang, W. H., Chen, W. C., Chang, Y. H., Huang, Y. C., & Chang, F. C. (2009). Non-fluorinated superamphiphobic surfaces through sol–gel processing of methyltriethoxysilane and tetraethoxysilane. Materials Chemistry and Physics, 114(1), 63-68.

[124] Urata, C., Cheng, D. F., Masheder, B., & Hozumi, A. (2012). Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids. Rsc Advances, 2(26), 9805-9808.

[125] Hill, P. J., Taylor, M., Goswami, P., & Blackburn, R. S. (2017). Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. Chemosphere, 181, 500-507.

[126] Hou, K., Zeng, Y., Zhou, C., Chen, J., Wen, X., Xu, S., ... & Pi, P. (2018). Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry. Chemical Engineering Journal, 332, 150-159.

[127] Holme, I. (1993). New developments in the chemical finishing of textiles. Journal of the textile institute, 84(4), 520-533.

[128] Rengasamy, R. S. (2011). Improving moisture management in apparel. In Improving comfort in clothing (pp. 182-215). Woodhead Publishing.

[129] Midha, V. K., Dakuri, A., & Midha, V. (2013). Studies on the properties of nonwoven surgical gowns. Journal of Industrial Textiles, 43(2), 174-190.

[130] https://www.dupont.com/what-is-tyvek.html

[131] Oh, J. H., Ko, T. J., Moon, M. W., & Park, C. H. (2014). Nanostructured superhydrophobic silk fabric fabricated using the ion beam method. Rsc Advances, 4(73), 38966-38973.

[132] Kong, Y., Liu, Y., & Xin, J. H. (2011). Fabrics with self-adaptive wettability controlled by “light-and-dark”. Journal of Materials Chemistry, 21(44), 17978-17987.

[133] Sasaki, K., Tenjimbayashi, M., Manabe, K., & Shiratori, S. (2016). Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Applied Materials & Interfaces, 8(1), 651-659.

[134] Zhou, X., Song, W., & Zhu, G. (2020). A facile approach for fabricating silica dioxide/reduced graphene oxide coated cotton fabrics with multifunctional properties. Cellulose, 27(5), 2927-2938.

[135] Babar, A. A., Miao, D., Ali, N., Zhao, J., Wang, X., Yu, J., & Ding, B. (2018). Breathable and colorful cellulose acetate-based nanofibrous membranes for directional moisture transport. ACS applied materials & interfaces, 10(26), 22866-22875.

[136] Airoudj, A., Bally-Le Gall, F., & Roucoules, V. (2016). Textile with durable janus wetting properties produced by plasma polymerization. The Journal of Physical Chemistry C, 120(51), 29162-29172.

[137] Youn, S., & Hee Park, C. (2019). Development of breathable Janus superhydrophobic polyester fabrics using alkaline hydrolysis and blade coating. Textile Research Journal, 89(6), 959-974.