Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2022, 4(2); doi: 10.25236/IJFM.2022.040208.

Research Progress on the Mechanism of miRNA-378 Osteogenesis and Angiogenesis


Hao Sun1, Wufanbieke Baheti2, Yinxuan Pu1, Quan Yang1, Shangyi Lv1, Yu Su1, Bangxiu Zheng1, Huiyu He1

Corresponding Author:
Huiyu He

1Department of Prosthodontics, the First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital), Xinjiang, China

2Department of Stomatology, People's Hospital of Xinjiang Autonomous Region Xinjiang, China


Bone tissue defect is mainly caused by trauma, tumor and infection, which will not only cause serious dysfunction and malformation but also cause serious psychological damage to patients. Bone defect repair is a complex process. The proposal of bone tissue engineering provides more possibilities for clinical bone defect related diseases. The formation of vascularization is also a key element in bone tissue engineering. Bone regeneration requires the interaction between osteogenesis and angiogenesis in order to form bone and reconstruct tissue. In bone tissue engineering, microRNA (miRNA) can mediate bone metabolism and affect bone development. microRNA-378(miR-378) can promote osteoblast differentiation through different mechanisms, showing a good application prospect in bone defect repair. This paper reviews the mechanism of osteogenesis and angiogenesis of miR-378, as a result of which may provide a new idea for the study of bone tissue regeneration.


microRNA, miR-378, Bone tissue engineering, Bone marrow mesenchymal stem cells, Osteogenic differentiation, Angiogenic differentiation

Cite This Paper

Hao Sun, Wufanbieke Baheti, Yinxuan Pu, Quan Yang, Shangyi Lv, Yu Su, Bangxiu Zheng, Huiyu He. Research Progress on the Mechanism of miRNA-378 Osteogenesis and Angiogenesis. International Journal of Frontiers in Medicine (2022), Vol. 4, Issue 2: 42-47. https://doi.org/10.25236/IJFM.2022.040208.


[1] Krist B, Florczyk U, Pietraszek-Gremplewicz K, et al. The Role of miR-378a in Metabolism, Angiogenesis, and Muscle Biology [J]. Int J Endocrinol, 2015, 2015: 281756.

[2] Chen Liang, Heikkinen Liisa, Wang Changliang, et al. Trends in the development of miRNA bioinformatics tools. [J]. Brief Bioinform,2019, 20: 1836-1852.

[3] Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay [J]. Nat Rev Genet, 2011, 12(2): 99-110. 

[4] Ge C, Wu S, Wang W, et al. miR-942 promotes cancer stem cell-like traits in esophageal squamous cell carcinoma through activation of Wnt/beta-catenin signalling pathway [J]. Oncotarget, 2015, 6(13): 10964-10977.

[5] Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies [J]. Pharmacol Ther, 2011, 131(1): 18-32. 

[6] Yao Guodong, Lian Yuan, Chen Peng, et al. Research progress of the role of MicroRNA in tumors [J]. Department of Gastrointestinal Surgery, 2019, 41(5): 771-775. 

[7] Fang S, Deng Y, Gu P, et al. MicroRNAs regulate bone development and regeneration [J]. Int J Mol Sci, 2015, 16(4): 8227-8253.

[8] Van Wijnen A J, van de Peppel J, van Leeuwen J P, et al. MicroRNA function in osteogenesis and dysfunctions in osteoporosis [J]. Curr Osteoporos Rep,2013, 11(2): 72-82. 

[9] Wong SA, Rivera KO, Miclau TR 3rd, et al. Microenvironmental regulation of chondrocyte plasticity in endochondral repair: a new frontier for developmental engineering [J]. Front Bioeng Biotechnol, 2018, 6: 58. 

[10] Zhang W B, Zhong W J, Wang L, A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation [J]. Bone, 2014, 58: 59-66.

[11] Li Y, Fan L, Liu S, et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a [J]. Biomaterials, 2013, 34(21): 5048-5058.

[12] Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2 [J]. Proc Natl Acad Sci USA, 2011, 108(24): 9863-9868. 

[13] Kim E J, Kang I H, Lee J W, et al. MiR-433 mediates ERRgamma-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells [J]. Life Sci, 2013, 92(10): 562-568. 

[14] Chen B, Yang W, Zhao H, et al. Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression [J]. Exp Ther Med, 2020, 19(2): 1042-1050. 

[15] Carmeliet P, Jain R K. Molecular mechanisms and clinical applications of angiogenesis [J]. Nature, 2011, 473 (7347): 298-307. 

[16] Tiwari A, Mukherjee B, Dixit M. MicroRNA Key to Angiogenesis Regulation: MiRNA Biology and Therapy. Curr Cancer Drug Targets. 2018; 18(3): 266-277.

[17] Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function an angiogenesis [J]. Biochem Biophys Res Commun, 2009, 386(4): 549-553.

[18] Jie Peng, Wen Cui. Research progress of miRNA-378 family [J]. Journal of Jining Medical College, 2019, 42(03): 189-195.

[19] Ming Zhao, Xiaocui Liu, Xiaoxue Cui, et al. Effects of miRNA378~* expression on cardiomyocyte apoptosis, expression of reticulum calcium binding protein and endoplasmic reticulum stress chaperonin in neonatal rats infected with coxsackievirus B3 [J]. Chinese Journal of Applied Physiology, 2017, 33(04): 304-307. 

[20] Zhang B, Li Y, Yu Y, et al. MicroRNA-378 Promotes Osteogenesis-Angiogenesis Coupling in BMMSCs for Potential Bone Regeneration [J]. Anal Cell Pathol (Amst), 2018, 2018: 8402390. 

[21] Jun Li, Xinhui Zuo, Xiaoyuan Liu, et al.Over-expression of miR-378a can affect the ability of bone marrow mesenchymal stem cells to differentiate into osteoblasts and blood vessels [J]. China Tissue Engineering Research, 2021,25(31): 4939-4944.

[22] Nan K, Zhang Y, Zhang X, et al. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu) [J]. Stem Cell Res Ther, 2021, 12(1): 331.

[23] Valenti M T, Deiana M, Cheri S, et al. Physical Exercise Modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p Expression in Progenitor Cells Promoting Osteogenesis [J]. Cells, 2019, 8(7).

[24] Hupkes M, Sotoca A M, Hendriks J M, et al. MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells[J]. BMC Mol Biol, 2014, 15: 1. 

[25] Kahai S, Lee S C, Lee D Y, et al. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7 [J]. PLoS One, 2009, 4(10): e7535. 

[26] Cui Z, Liu Q L, Sun S Q, et al. MiR-378a-5p inhibits angiogenesis of oral squamous cell carcinoma by targeting KLK4 [J]. Neoplasma, 2020, 67(1): 85-92. 

[27] Xing Y, Hou J, Guo T, et al. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro[J]. Stem Cell Res Ther, 2014, 5(6): 130.

[28] Bruchova H, Yoon D, Agarwal A M, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis [J]. Exp Hematol, 2007, 35(11): 1657-1667.

[29] Sisi Zhong, Liuyan Xin, Yongliang Zheng, et al. Research progress of miR-378 and tumor [J]. Chinese Journal of Geriatrics, 2015, 35(24): 7253-7256.

[30] Jiang J, Lee E J, Gusev Y, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines [J]. Nucleic Acids Res, 2005, 33(17): 5394-5403.

[31] Guo J, Miao Y, Xiao B, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues [J]. J Gastroenterol Hepatol, 2009, 24(4): 652-657.

[32] Yao Y, Suo A L, Li Z F, et al. MicroRNA profiling of human gastric cancer [J]. Mol Med Rep, 2009, 2(6): 963-970.

[33] Scapoli L, Palmieri A, Lo M L, et al.MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression [J]. Int J Immunopathol Pharmacol, 2010, 23(4): 1229-1234.

[34] Wang Y X, Zhang X Y, Zhang B F, et al. Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis [J]. J Dig Dis, 2010, 11(1): 50-54.

[35] Redova M, Poprach A, Nekvindova J, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma [J]. J Transl Med, 2012, 10:55.

[36] Scapoli L, Palmieri A, Lo M L, et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression [J]. Int J Immunopathol Pharmacol, 2010, 23(4): 1229-1234. 

[37] Velazquez-Torres G, Shoshan E, Ivan C, et al. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression [J]. Nat Commun, 2018, 9(1): 461. 

[38] Lee D Y, Deng Z, Wang C H, et al. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression[J]. ProcNatl Acad Sci U S A, 2007, 104(51): 20350-20355. 

[39] Chan J K, Kiet T K, Blansit K, et al. MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer [J]. Gynecol Oncol,2014,133(3):568-574.

[40] Feng L, Zhang J F, Shi L, et al. MicroRNA-378 Suppressed Osteogenesis of MSCs and Impaired Bone Formation via Inactivating Wnt/beta-Catenin Signaling [J]. Mol Ther Nucleic Acids, 2020, 21: 1017-1028.