Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2022, 4(3); doi: 10.25236/IJFM.2022.040304.

Advances in Laboratory Diagnosis of COVID-19


Man Wu1, Dawang Wang1, Yanxia Ma, Feixue Feng2

Corresponding Author:
Yanxia Ma

1School of Medical Technology, Shaanxi University of Traditional Chinese Medicine, Xianyang, China

2Department of Laboratory Medicine, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China


COVID-19 outbreak is the fastest spreading, most widely infected, and most difficult to prevent and control major health emergency since the founding of New China. Early diagnosis and timely control of suspected cases are key to containing the spread of the epidemic. Currently, the main laboratory detection methods include virus isolation and culture, real-time RT-PCR (rRT-PCR), genome sequencing, isothermal amplification, CRISPR/CAS technique, gene chip, and antigen-antibody detection. In this paper, we review the above detection methods and compare their advantages and disadvantages to provide a reference for the diagnosis of COVID-19.


COVID-19; SARS-CoV-2; Virus isolation; Nucleic acid detection; Serological detection; Rapid diagnostic tests

Cite This Paper

Man Wu, Dawang Wang, Yanxia Ma, Feixue Feng. Advances in Laboratory Diagnosis of COVID-19. International Journal of Frontiers in Medicine (2022), Vol. 4, Issue 3: 15-23. https://doi.org/10.25236/IJFM.2022.040304.


[1] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology, 5(4), 536–544. 

[2] World Health Organization. WHO coronavirus (COVID-19) dashboard. https://covid19.who.int.

[3] Technical specifications for selection of essential in vitro diagnostics for SARS-CoV-2. Geneva: World Health Organization. https://www.who.int/publications/m/item/technical-specifications-for-selection-of-essential-in-vitro-diagnostics-for-sars-cov-2.

[4] Masters P. S. (2019). Coronavirus genomic RNA packaging. Virology, 537, 198–207. 

[5] Schoeman, D.,&Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0

[6] Chan, J. F., Kok, K. H., Zhu, Z., Chu, H., To, K. K., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging microbes & infections, 9(1), 221–236. 

[7] Hou, T., Zeng, W., Yang, M., Chen, W., Ren, L., Ai, J., Wu, J., Liao, Y., Gou, X., Li, Y., Wang, X., Su, H., Gu, B., Wang, J., & Xu, T. (2020). Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS pathogens, 16(8), e1008705. 

[8] Liang, W. H., Guan, W. J., Li, C. C., Li, Y. M., Liang, H. R., Zhao, Y., Liu, X. Q., Sang, L., Chen, R. C., Tang, C. L., Wang, T., Wang, W., He, Q. H., Chen, Z. S., Wong, S. S., Zanin, M., Liu, J., Xu, X., Huang, J., Li, J. F., … He, J. X. (2020). Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicentre) and outside Hubei (non-epicentre): a nationwide analysis of China. The European respiratory journal, 55(6), 2000562. 

[9] Wei, W. E., Li, Z., Chiew, C. J., Yong, S. E., Toh, M. P., & Lee, V. J. (2020). Presymptomatic Transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020. MMWR. Morbidity and mortality weekly report, 69(14), 411–415. 

[10] Zhu, N., Wang, W., Liu, Z., Liang, C., Wang, W., Ye, F., Huang, B., Zhao, L., Wang, H., Zhou, W., Deng, Y., Mao, L., Su, C., Qiang, G., Jiang, T., Zhao, J., Wu, G., Song, J., & Tan, W. (2020). Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nature communications, 11(1), 3910. 

[11] Zhao, J., Zhou, H., Huang, W., Zhou, J., Qiu, M., Deng, Z., Chen, L., Weng, Y., Cai, L., Gu, Y., Zheng, Q., Chen, Q., Hou, X., Wang, L., Shen, L., & Yang, Z. (2020). Cell morphological analysis of SARS-CoV-2 infection by transmission electron microscopy. Journal of thoracic disease, 12(8), 4368–4373. 

[12] Bain, W., Lee, J. S., Watson, A. M., & Stitt-Fischer, M. S. (2020). Practical Guidelines for Collection, Manipulation and Inactivation of SARS-CoV-2 and COVID-19 Clinical Specimens. Current protocols in cytometry, 93(1), e77. 

[13] Jianjun, W., Ping, Z., Liang, W., Zhe, X., Fusheng, W., Yongqian, C. (2020) Advances in laboratory diagnostic techniques for novel coronavirus pneumonia. Chinese Journal of Infection Control, 19 (05), 481-486.

[14] Bing, Z. X., Yu, P. N., Lili, C. (2021) Advances in laboratory testing methods for novel coronaviruses. Journal of Virology, 37 (02), 428-434.

[15] Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. 

[16] Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England), 395(10224), 565–574. 

[17] Quick, J., Grubaugh, N. D., Pullan, S. T., Claro, I. M., Smith, A. D., Gangavarapu, K., Oliveira, G., Robles-Sikisaka, R., Rogers, T. F., Beutler, N. A., Burton, D. R., Lewis-Ximenez, L. L., de Jesus, J. G., Giovanetti, M., Hill, S. C., Black, A., Bedford, T., Carroll, M. W., Nunes, M., Alcantara, L. C., Jr, … Loman, N. J. (2017). Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nature protocols, 12(6), 1261–1276. 

[18] Vilsker, M., Moosa, Y., Nooij, S., Fonseca, V., Ghysens, Y., Dumon, K., Pauwels, R., Alcantara, L. C., Vanden Eynden, E., Vandamme, A. M., Deforche, K., & de Oliveira, T. (2019). Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics (Oxford, England), 35(5), 871–873. 

[19] Wang, J., Cai, K., Zhang, R., He, X., Shen, X., Liu, J., Xu, J., Qiu, F., Lei, W., Wang, J., Li, X., Gao, Y., Jiang, Y., Xu, W., & Ma, X. (2020). Novel One-Step Single-Tube Nested Quantitative Real-Time PCR Assay for Highly Sensitive Detection of SARS-CoV-2. Analytical chemistry, 92(13), 9399–9404. 

[20] Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G., Haagmans, B. L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., Peiris, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(3), 2000045. 

[21] Technical Guidelines for Laboratory Testing of Pneumonia in Novel Coronavirus Infections (4th Edition). http://www.nhc.gov.n/jkj/s3577/202002/573340613cab243b3a7f61df260551dd4.shtml.

[22] Chan, J. F., Yip, C. C., To, K. K., Tang, T. H., Wong, S. C., Leung, K. H., Fung, A. Y., Ng, A. C., Zou, Z., Tsoi, H. W., Choi, G. K., Tam, A. R., Cheng, V. C., Chan, K. H., Tsang, O. T., & Yuen, K. Y. (2020). Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. Journal of clinical microbiology, 58(5), e00310-20. 

[23] Yip, C. C., Ho, C. C., Chan, J. F., To, K. K., Chan, H. S., Wong, S. C., Leung, K. H., Fung, A. Y., Ng, A. C., Zou, Z., Tam, A. R., Chung, T. W., Chan, K. H., Hung, I. F., Cheng, V. C., Tsang, O. T., Tsui, S., & Yuen, K. Y. (2020). Development of a Novel, Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-PCR Assay and Its Evaluation Using Clinical Specimens. International journal of molecular sciences, 21(7), 2574. 

[24] Zhou, Y., Zhang, L., Xie, Y. H., & Wu, J. (2022). Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics. Laboratory investigation; a journal of technical methods and pathology, 102(1), 4–13. 

[25] Yu, F., Du, L., Ojcius, D. M., Pan, C., & Jiang, S. (2020). Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes and infection, 22(2), 74–79. 

[26] Falzone, L., Musso, N., Gattuso, G., Bongiorno, D., Palermo, C. I., Scalia, G., Libra, M., & Stefani, S. (2020). Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. International journal of molecular medicine, 46(3), 957–964. 

[27] Bizouarn F. (2014). Clinical applications using digital PCR. Methods in molecular biology (Clifton, N.J.), 1160, 189–214. 

[28] Salemi, R., Falzone, L., Madonna, G., Polesel, J., Cinà, D., Mallardo, D., Ascierto, P. A., Libra, M., & Candido, S. (2018). MMP-9 as a Candidate Marker of Response to BRAF Inhibitors in Melanoma Patients with BRAFV600E Mutation Detected in Circulating-Free DNA. Frontiers in pharmacology, 9, 856.

[29] Pinheiro, L. B., Coleman, V. A., Hindson, C. M., Herrmann, J., Hindson, B. J., Bhat, S., & Emslie, K. R. (2012). Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Analytical chemistry, 84(2), 1003–1011. 

[30] Suo, T., Liu, X., Feng, J., Guo, M., Hu, W., Guo, D., Ullah, H., Yang, Y., Zhang, Q., Wang, X., Sajid, M., Huang, Z., Deng, L., Chen, T., Liu, F., Xu, K., Liu, Y., Zhang, Q., Liu, Y., Xiong, Y., … Chen, Y. (2020). ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerging microbes & infections, 9(1), 1259–1268.

[31] Haiyan, L., Wenxin, L., Zhigang, Y. (2017) Advances in isothermal nucleic acid amplification technology. Medical Innovation in China, 14 (16), 145-148.

[32] Park, G. S., Ku, K., Baek, S. H., Kim, S. J., Kim, S. I., Kim, B. T., & Maeng, J. S. (2020). Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The Journal of molecular diagnostics: JMD, 22(6), 729–735. 

[33] Yan, C., Cui, J., Huang, L., Du, B., Chen, L., Xue, G., Li, S., Zhang, W., Zhao, L., Sun, Y., Yao, H., Li, N., Zhao, H., Feng, Y., Liu, S., Zhang, Q., Liu, D., & Yuan, J. (2020). Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 26(6), 773–779. 

[34] Song, J., Liu, C., Mauk, M. G., Rankin, S. C., Lok, J. B., Greenberg, R. M., & Bau, H. H. (2017). Two-Stage Isothermal Enzymatic Amplification for Concurrent Multiplex Molecular Detection. Clinical chemistry, 63(3), 714–722. 

[35] Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., Freije, C. A., Myhrvold, C., Bhattacharyya, R. P., Livny, J., Regev, A., Koonin, E. V., Hung, D. T., Sabeti, P. C., Collins, J. J., & Zhang, F. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (New York, N.Y.), 356(6336), 438–442. 

[36] Nguyen, L. T., Gurijala, J., Rananaware, S. R., Pizzano, B., Stone, B. T., & Jain, P. K. (2021). CRISPR-ENHANCE: An enhanced nucleic acid detection platform using Cas12a. Methods (San Diego, Calif.), S1046-2023(21)00025-6. Advance online publication.

[37] Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature protocols, 14(10), 2986–3012. 

[38] Joung, J., Ladha, A., Saito, M., Segel, M., Bruneau, R., Huang, M. W., Kim, N. G., Yu, X., Li, J., Walker, B. D., Greninger, A. L., Jerome, K. R., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2020). Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv: the preprint server for health sciences, 2020.05.04.20091231. 

[39] Curti, L. A., Primost, I., Valla, S., Ibañez Alegre, D., Olguin Perglione, C., Repizo, G. D., Lara, J., Parcerisa, I., Palacios, A., Llases, M. E., Rinflerch, A., Barrios, M., Pereyra Bonnet, F., Gimenez, C. A., & Marcone, D. N. (2021). Evaluation of a Lyophilized CRISPR-Cas12 Assay for a Sensitive, Specific, and Rapid Detection of SARS-CoV-2. Viruses, 13(3), 420. 

[40] Chen, Q., Li, J., Deng, Z., Xiong, W., Wang, Q., & Hu, Y. Q. (2010). Comprehensive detection and identification of seven animal coronaviruses and human respiratory coronavirus 229E with a microarray hybridization assay. Intervirology, 53(2), 95–104. 

[41] BIO releases microarray kit for one-time detection of 6 respiratory viruses within 1.5 hours. http://zgcgw.beijing. gov. cn/zgc/yw/kjqy72/1702086/index. html.

[42] Wei, L., Weidong, D., Xuejun, Z. (2004) Application of MALDI-TOF MS technique in biochip detection. Journal of Medical Molecular Biology, (03), 190-193.

[43] Liu, T., Kang, L., Li, Y., Huang, J., Guo, Z., Xu, J., Hu, Y., Zhai, Z., Kang, X., Jiang, T., Li, H., Song, H., Wang, J., Gao, S., Li, J., Zhou, X., Yuan, Y., Zhao, B., Wang, J., Xin, W. (2022) Simultaneous Detection of Seven Human Coronaviruses by Multiplex PCR and MALDI-TOF MS. COVID, 2 (1), 5-17.

[44] Xiaomei, L., Jing, W., Ya, Z., Chengjun, X., Kun, Y. , Lixiang, X., Navy, L., Mei, H., Mei, L., Fawn, D. R., Fulong, L., Changhua, H., Yaokai, C. (2020) Analysis of the value of whole blood SARS-CoV-2 specific antibody test for clinical application in 2019-coronavirus disease. Journal of Southwestern University (Natural Science Edition), 42 (03), 30-34.

[45] Zhang, Y., Zhou, Z., Wang, Z., Su, Y., Xiao, M., Xu, Y., Wang, H. (2020)  Discussion on the clinical value of combined detection of SARS-CoV-2 nucleic acid, antigen and antibody. Journal of Modern Laboratory Medicine, 99-102.

[46] Li, Q., Liu, D., Qiao, Z. (2020) Value of SARS‐CoV‐2 IgM/IgG antibody detection in diagnosis of new coronavirus pneumonia. Int J Lab Med.

[47] Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., Sun, R., Wang, Y., Hu, B., Chen, W., Zhang, Y., Wang, J., Huang, B., Lin, Y., Yang, J., Cai, W., Wang, X., Cheng, J., Chen, Z., Sun, K., … Ye, F. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Journal of medical virology, 92(9), 1518–1524. 

[48] Jian, M., Pengfei, H., Chenyan, Z., Ruifeng, C., Qiang, L., Youchun, W., Weijin, H., Xiaoming, Y. (2019) Development of a neutralizing antibody pseudovirus assay for SARS and MERS. Journal of Virology, 35 (02), 189-195.

[49] Mingyuan, Z., Guoqiu, W. (2020) Effect of antigenic cross-reactivity on the detection of serum-specific antibodies to novel coronaviruses. Journal of Clinical Laboratory, 38 (03), 161-163.

[50] Qiu, M., Shi, Y., Guo, Z., Chen, Z., He, R., Chen, R., Zhou, D., Dai, E., Wang, X., Si, B., Song, Y., Li, J., Yang, L., Wang, J., Wang, H., Pang, X., Zhai, J., Du, Z., Liu, Y., Zhang, Y., … Yang, R. (2005). Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes and infection, 7(5-6), 882–889.

[51] Porte, L., Legarraga, P., Vollrath, V., Aguilera, X., Munita, J. M., Araos, R., Pizarro, G., Vial, P., Iruretagoyena, M., Dittrich, S., & Weitzel, T. (2020). Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 99, 328–333. 

[52] Grant, B. D., Anderson, C. E., Williford, J. R., Alonzo, L. F., Glukhova, V. A., Boyle, D. S., Weigl, B. H., & Nichols, K. P. (2020). SARS-CoV-2 Coronavirus Nucleocapsid Antigen-Detecting Half-Strip Lateral Flow Assay Toward the Development of Point of Care Tests Using Commercially Available Reagents. Analytical chemistry, 92(16), 11305–11309. 

[53] Patel, R., Babady, E., Theel, E. S., Storch, G. A., Pinsky, B. A., St George, K., Smith, T. C., & Bertuzzi, S. (2020). Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19. mBio, 11(2), e00722-20. 

[55] Kozel, T. R., & Burnham-Marusich, A. R. (2017). Point-of-Care Testing for Infectious Diseases: Past, Present, and Future. Journal of clinical microbiology, 55(8), 2313–2320. 

[56] Foundation for Innovative New Diagnostics. Test directory.

[57] Zhen, W., Smith, E., Manji, R., Schron, D., & Berry, G. J. (2020). Clinical Evaluation of Three Sample-to-Answer Platforms for Detection of SARS-CoV-2. Journal of clinical microbiology, 58(8), e00783-20. 

[58] Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., Sun, R., Wang, Y., Hu, B., Chen, W., Zhang, Y., Wang, J., Huang, B., Lin, Y., Yang, J., Cai, W., Wang, X., Cheng, J., Chen, Z., Sun, K., … Ye, F. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Journal of medical virology, 92(9), 1518–1524. 

[59] Zhang, N., Wang, L., Deng, X., Liang, R., Su, M., He, C., Hu, L., Su, Y., Ren, J., Yu, F., Du, L., & Jiang, S. (2020). Recent advances in the detection of respiratory virus infection in humans. Journal of medical virology, 92(4), 408–417.

[60] Behera, B. C., Mishra, R. R., & Thatoi, H. (2021). Recent biotechnological tools for diagnosis of corona virus disease: A review. Biotechnology progress, 37(1), e3078. 

[61] Samson, R., Navale, G. R., & Dharne, M. S. (2020). Biosensors: frontiers in rapid detection of COVID-19. 3 Biotech, 10(9), 385. 

[62] Seo, G., Lee, G., Kim, M. J., Baek, S. H., Choi, M., Ku, K. B., Lee, C. S., Jun, S., Park, D., Kim, H. G., Kim, S. J., Lee, J. O., Kim, B. T., Park, E. C., & Kim, S. I. (2020). Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS nano, 14(4), 5135–5142. 

[63] Kaarj, K., Akarapipad, P., & Yoon, J. Y. (2018). Simpler, Faster, and Sensitive Zika Virus Assay Using Smartphone Detection of Loop-mediated Isothermal Amplification on Paper Microfluidic Chips. Scientific reports, 8(1), 12438. 

[64] Feng, S., Choi, J. R., Lu, T. J., Xu, F. (2015) State-of-art advances in liquid penetration theory and flow control in paper for paper-based diagnosis. Adv Porous Flow, 5, 16-29.

[65] Gong, Y., Hu, J., Choi, J. R., You, M., Zheng, Y., Xu, B., Wen, T., & Xu, F. (2017). Improved LFIAs for highly sensitive detection of BNP at point-of-care. International journal of nanomedicine, 12, 4455–4466.

[66] Hoffman, T., Nissen, K., Krambrich, J., Rönnberg, B., Akaberi, D., Esmaeilzadeh, M., Salaneck, E., Lindahl, J., & Lundkvist, Å. (2020). Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2. Infection ecology & epidemiology, 10(1), 1754538.