Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2022, 4(3); doi: 10.25236/IJFM.2022.040306.

Research Progress in Relationship between Chronic Inflammation and Development of Esophageal Cancer


Qiannan Wang1, Jinfeng Shi1, Jiaqin Zheng1, Yuanyuan Li1, Hanyu Wang1, Yu Mi1, Zibo Dong1, 2

Corresponding Author:
Zibo Dong

1School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China

2Excellent Science and Technology Innovation Team of Jiangsu Provincial Department of Education, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Lianyungang, 222005, China


As a common malignant tumor of the digestive tract, esophageal cancer has a high incidence in China, accounting for about half of the global incidence. The pathogenic factors are complicated, primarily related to eating diet, obesity, gastroesophageal reflux disease, and Barrett's esophagus. In this article, through the literature search of Web of Science, PubMed, and CNKI, we analyzed the transformation of inflammatory cells cytokines. We activated the inflammatory pathway in chronic inflammation of the esophagus. These form the tumor microenvironment suitable for tumorigenesis, proliferation, and metastasis, essential in transforming inflammation, metaplasia, and adenocarcinoma of the esophagus. Therefore, understanding the relationship between chronic inflammation and esophageal cancer development can provide new ideas for preventing and treating esophageal cancer.


Gastroesophageal reflux disease; inflammatory factors; inflammatory pathway; esophageal cancer

Cite This Paper

Qiannan Wang, Jinfeng Shi, Jiaqin Zheng, Yuanyuan Li, Hanyu Wang, Yu Mi, Zibo Dong. Research Progress in Relationship between Chronic Inflammation and Development of Esophageal Cancer. International Journal of Frontiers in Medicine (2022), Vol. 4, Issue 3: 34-40. https://doi.org/10.25236/IJFM.2022.040306.


[1] Hyuna S, Jacques F, Rebecca S, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians [J], 2021, 71(3): 67-84

[2] Zongchao L, Zhexuan L, Yang Z, et al. Interpretation on the report of Global Cancer Statistics 2020 [J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021, 7(02): 1-14.

[3] Songbo L. Changing trends in the disease burden of esophageal cancer in China from 1990 to 2017 and its predicated level in 25 years [D]. Shangdong University, 2021.

[4] CHEN R, LIU Y, SONG G, et al. Effectiveness of one-time endoscopic screening programme in prevention of upper gastrointestinal cancer in China: a multicentre population-based cohort study. Gut [J], 2021, 70(2): 251-260.

[5] Chengwei P, Deirdre J. Advances in the pharmacotherapeutic management of esophageal squamous cell carcinoma. Expert Opinion on Pharmacotherapy [J], 2021, 22(1): 89-106

[6] Ho ALK, Smyth EC, A global perspective on oesophageal cancer: two diseases in one. The Lancet Gastroenterology & Hepatology [J], 2020. 5(6): 521-522.

[7] Wang K, Zhang L, He Z, et al. A population-based survey of gastroesophageal reflux disease in a region with high prevalence of esophageal cancer in China. Chin Med J (Engl) [J], 2019. 132(13): 1516-1523.

[8] Kamangar F, Nasrollahzadeh D, Safiri S. et al. The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology & Hepatology [J], 2020. 5(6): 582-597.

[9] Schlottmann F, Dreifuss NH, and Patti MG. Obesity and esophageal cancer: GERD, Barrett’s esophagus, and molecular carcinogenic pathways. Expert Rev Gastroenterol Hepatol [J], 2020. 14(6): 425-433.

[10] Ness-Jensen E, and Lagergren J. Tobacco smoking, alcohol consumption and gastro-oesophageal reflux disease. Best Pract Res Clin Gastroenterol [J], 2017. 31(5): 501-508.

[11] Avgerinos KI, Spyrou N, Mantzoros CS, et al. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism [J], 2019. 92: 121-135.

[12] Eusebi LH, Ratnakumaran R, Yuan Y, et al. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: a meta-analysis. Gut [J], 2018. 67(3): 430-440.

[13] Richter E, Rubenstein H. Presentation and Epidemiology of Gastroesophageal Reflux Disease. Gastroenterology [J], 2018, 154(2): 267-276

[14] Katzka DA, and P.J. Kahrilas, Advances in the diagnosis and management of gastroesophageal reflux disease. BMJ [J], 2020. 371- 376.

[15] Bhat A A, Nisar S, Maacha S, et al. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy [J]. Molecular cancer, 2021, 20(1): 1-20.

[16] Gergen A K, Jarrett M J, Li A, et al. Toll-like Receptor 4 Mediates Reflux-Induced Inflammation in a Murine Reflux Model [C]. Seminars in Thoracic and Cardiovascular Surgery. WB Saunders, 2021

[17] Grady WM, Yu M, Markowitz SD, et al. Barrett's Esophagus and Esophageal Adenocarcinoma Biomarkers. Cancer Epidemiol Biomarkers Prev [J], 2020. 29(12): 2486-2494.

[18] Peters Y, Al-Kaabi A, Shaheen NJ, et al. Barrett oesophagus. Nat Rev Dis Primers [J], 2019. 5(1): 35.

[19] Hao W, Shen Y, Feng M. et al. Aspirin acts in esophageal cancer: a brief review. J Thorac Dis [J], 2018. 10(4): 2490-2497.

[20] Baba Y, Nomoto D, Okadome K, et al. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci [J], 2020. 111(9): 3132-3141.

[21] Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression [J]. British journal of cancer, 2019, 120(1): 16-25.

[22] Jeong S M, Kim Y J. Astaxanthin treatment induces maturation and functional change of myeloid-derived suppressor cells in tumor-bearing mice [J]. Antioxidants, 2020, 9(4): 350.

[23] Han P, Cao P, Hu S, et al. Esophageal Microenvironment: From Precursor Microenvironment to Premetastatic Niche. Cancer Manag Res [J], 2020.12: 5857-5879.

[24] Stairs DB, Bayne LJ, Rhoades B, et al. Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene. Cancer Cell [J], 2011. 19(4): 470-483.

[25] Farshidpour M, Ahmed M, Junna S, et al. Myeloid-derived suppressor cells in gastrointestinal cancers: A systemic review [J]. World Journal of Gastrointestinal Oncology, 2021, 13(1): 1.

[26] Chen MF, Kuan FC, Yen TC, et al. IL-6-stimulated CD11b+ CD14+ HLA-DR- myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget [J], 2014, 5(18): 8716-8728

[27] Knochelmann H M, Dwyer C J, Bailey S R, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity [J]. Cellular & molecular immunology, 2018, 15(5): 458-469.

[28] Coleman HG, Xie SH, and Lagergren J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology[J], 2018. 154(2): 390-405.

[29] Lu Y, Guo L, Ding G. PD1+ tumor associated macrophages predict poor prognosis of locally advanced esophageal squamous cell carcinoma [J]. Future Oncology, 2019, 15(35): 4019-4030.

[30] Davern M, Donlon N E, Power R, et al. The tumour immune microenvironment in oesophageal cancer [J]. British Journal of Cancer, 2021, 125(4): 479-494.

[31] Gao J, Wu Y, Su Z, et al. Infiltration of alternatively activated macrophages in cancer tissue is associated with MDSC and Th2 polarization in patients with esophageal cancer. PLoS ONE [J], 2017, 9(8): e104453.

[32] Higashino N, Koma YI, Hosono M, et al. Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Invest, 2019. 99(6): 777-792. 

[33] Kashima H, Noma K, Ohara T, et al. Cancer-associated fibroblasts (CAFs) promote the lymph node metastasis of esophageal squamous cell carcinoma. Int J Cancer, 2019. 144(4): 828-840.

[34] Souza RF, Huo X, Mittal V, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology [J], 2009. 137(5): 1776-1784.

[35] Bierie B, and Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer [J], 2006. 6(7): 506-520.

[36] Wang J, Wu M, Zheng D, et al. Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways. Acta Pharmacologica Sinica [J], 2019. 41(1): 82-92.

[37] Chen Y, Dandan W, Hao P, et al. Epigenetically upregulated oncoprotein PLCE1 drives esophageal carcinoma angiogenesis and proliferation via activating the PI-PLCε-NF-κB signaling pathway and VEGF-C/ Bcl-2 expression. Molecular Cancer [J], 2019. 18(1): 760-783.

[38] Yang H, Xu M, Lu F, et al. Tocopherols inhibit esophageal carcinogenesis through attenuating NF-κB activation and CXCR3-mediated inflammation[J]. Oncogene, 2018, 37(29): 3909-3923.

[39] Lin EW, Karakasheva TA, Hicks PD, et al. The tumor microenvironment in esophageal cancer. Oncogene, 2016. 35(41): 5337-5349.

[40] Mukaisho KI, Kanai S, Kushima R, et al. Barretts's carcinogenesis. Pathol Int [J], 2019. 69(6): 319-330.

[41] Macedo C, Miranda V, Henrique R, et al. The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance. Genes (Basel) [J], 2019. 10(11): 54-79.

[42] Li D, Deconda D, Li A, et al. Effect of Proton Pump Inhibitor Therapy on NOX5, mPGES1 and iNOS expression in Barrett’s Esophagus [J]. Scientific reports, 2019, 9(1): 1-9.

[43] Lv J, Guo L, Liu J J, et al. Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma [J]. World journal of gastroenterology, 2019, 25(18): 2149.

[44] Yang L, Francois F, and Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res [J], 2012. 18(8): 2138-2144.

[45] Walker MM, and Talley NJ. Review article: bacteria and pathogenesis of disease in the upper gastrointestinal tract--beyond the era of Helicobacter pylori. Aliment Pharmacol Ther [J], 2014. 39(8): 767-779.

[46] Kohtz PD, Halpern AL, Eldeiry MA, et al. Toll-Like Receptor-4 Is a Mediator of Proliferation in Esophageal Adenocarcinoma. Ann Thorac Surg [J], 2019. 107(1): 233 -241.

[47] Matsui D, Omstead AD, Juliann K, et al. High yield reproducible rat model recapitulating human Barrett's carcinogenesis. World Journal of Gastroenterology [J], 2017, 23(33): 6077-6087.

[48] Wang L, and Hauenstein AV, The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol Aspects Med [J], 2020.76: 100889.

[49] Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci [J], 2019. 20(13): 379-402.

[50] Yin XL, Wu HM, Zhang BH, et al. Tojapride prevents CaSR-mediated NLRP3 inflammasome activation in oesophageal epithelium irritated by acidic bile salts. J Cell Mol Med [J], 2020. 24(2): 1208-1219.

[51] Yu S, Yin JJ, Miao J X, et al. Activation of NLRP3 inflammasome promotes the proliferation and migration of esophageal squamous cell carcinoma. Oncol Rep [J], 2020. 43(4): 1113-1124.