Welcome to Francis Academic Press

Academic Journal of Computing & Information Science, 2022, 5(3); doi: 10.25236/AJCIS.2022.050315.

Research on Product Recommendation Based on Association Rules and Improved Apriori Algorithm


Jiayi wang1, Mengjia Jiang2

Corresponding Author:
Jiayi wang

1School of Labor Economics, Capital University of Economics and Business, Beijing, 100070, China

2School of Maths and Physics, Chengdu University of Technology, Chengdu, 610059, China


With the rapid development of the Internet era, online sales services have gradually become an indispensable part of people's daily life. In the face of huge network data, how to find products that can maximize the utility of customers and form product recommendations that are beneficial to merchants has become an important issue. In this paper, through the in-depth analysis of the commodities and customer purchase data of a bicycle commodity store, the Apriori algorithm is used to mine the association rules of the data, and the commodity combination with strong correlation is obtained. At the same time, the traditional Apriori algorithm has certain limitations, that is, the algorithm only considers the probability of the transaction, but does not consider the weight of different products, and then we introduce the intuitionistic fuzzy number to represent the weight of the item. Improvements have been made, resulting in a more accurate and effective product recommendation combination. The implementation of this algorithm can be widely used in the commercial field to achieve the purpose of using best-selling commodities to drive relatively non-selling commodities, and at the same time maximize the utility of consumers, which also brings greater benefits to businesses, thus forming a healthy network. The sales structure has important practical significance to the current era.


Product recommendation; Apriori algorithm improvement; Consumer behavior; Fuzzy numbers; E-commerce

Cite This Paper

Jiayi wang, Mengjia Jiang. Research on Product Recommendation Based on Association Rules and Improved Apriori Algorithm. Academic Journal of Computing & Information Science (2022), Vol. 5, Issue 3: 101-106. https://doi.org/10.25236/AJCIS.2022.050315.


[1] Lin Sui, Zheng Zhihao. Research on customer behavior modeling and product recommendation based on association rules [J]. Journal of Guangdong University of Technology, 2018, v.35; No.134 (03): 90-94.

[2] Yu Yan. Application of Effective Time Probabilistic Association Rules in Commodity Recommendation System [J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2009, v.7; No.25(01): 58-62.

[3] Jia Hang. Research on Commodity Recommendation Model Based on Similarity Division and Association Rules [D]. Dalian Maritime University, 2020. DOI: 10.26989/d.cnki.gdlhu.2020.000139.

[4] Zeng Lei. Research on Apriori Algorithm in Association Rule Mining [D]. Chongqing Jiaotong University, 2016.

[5] Wang Wei. Research and Improvement of Apriori Algorithm in Association Rules [D]. Ocean University of China, 2012.