International Journal of Frontiers in Medicine, 2022, 4(4); doi: 10.25236/IJFM.2022.040410.
Zhang Shuyan1, Zhang Huan1, Zou Chunbo2
1Nantong University, Medical School, Nantong, Jiangsu, 226000, China
2Taizhou City People's Hospital, Taizhou, Jiangsu, 225300, China
Diabetic kidney disease(DKD) is the most common complication of diabetes prevalence rate increased year by year, kidney as one of the body organs consumption, need to provide enough mitochondria ATP to maintain the normal physiological function, sustained high blood sugar levels induced by activating multiple pathways mitochondria damage, cause the energy imbalance, ATP production, to its negative effects, in recent years, Mitochondrial dysfunction has been concerned in the occurrence and development of kidney diseases, and is considered to be a key factor involved in the pathogenesis of diabetic kidney disease. In this paper, the role of mitochondrial structure and dysfunction in the progression of DKD is described, providing a theoretical basis for controlling the progression of DKD.
Mitochondrial structure; mitochondrial dysfunction; diabetic kidney disease
Zhang Shuyan, Zhang Huan, Zou Chunbo. Progress in the correlation of mitochondrial dysfunction and diabetic kidney disease. International Journal of Frontiers in Medicine (2022), Vol. 4, Issue 4: 54-60. https://doi.org/10.25236/IJFM.2022.040410.
[1] Ps A, Ip A, Ps A, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 th edition[J]. Diabetes Research and Clinical Practice, 157.
[2 ]Expert group of Chinese Society of Nephrology. Clinical guidelines for the diagnosis and treatment of diabetic kidney disease in China [J]. Chinese Journal of Nephrology, 2021, 37(03):255-304.
[3] Zhang X, Kong J, Yun K. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: a meta-analysis of observational studies [J]. J Diabetes Res,2020,2020:1-11.
[4]Duan Yinglian, Ma Chanjuan. Research progress of microrNA in the pathogenesis of diabetic nephropathy [J]. Journal of Clinical Nephrology, 02,121(3):243-248. DOI:10.3969/j.issn.1671-2390.y20-128.
[5] Cogliati S, Enriquez JA, Scorrano L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci. 2016 Mar; 41(3):261-273. Doi: 10.1016/j.tibs. 2016.01.001. Epub 2016 Feb 6. PMID: 26857402.
[6] Wiedemann, N., and Pfanner, N. (2017). Mitochondrial Machineries for Protein Import and Assembly. Annu. Rev. Biochem. 86, 685–714. Doi: 10.1146/annurev- biochem-060815-014352
[7] Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol. 2021 May 11 3210002 . Doi: 10.1098/rsob. 210002. Epub 2021 Mar 10. PMID: 33715390; PMCID: PMC8061763
[8] Wiedemann N, Pfanner N. Mitochondrial Machineries for Protein Import and Assembly. Annu Rev Biochem. 2017 Jun 20 86:685-714. Doi: 10.1146/annurev-biochem-060815-014352. Epub 2017 Mar 15. PMID: 28301740.
[9] Prinz, W.A., Toulmay, A., and Balla, T. (2020). The Functional Universe of Membrane Contact Sites. Nat. Rev. Mol. Cel Biol. 21, 7–24. Doi 10.1038/s41580-019-0180-9
[10] Hou Y, Wang Q, Han B, Chen Y, Qiao X, Wang L.CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis. 2021 May 21 12(6) 523. Doi: 10.1038/s41419-021-03813-6. PMID: 34021126; PMCID: PMC8140121.
[11] Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci. 2019 Feb 1;218:165-184. doi: 10.1016/j.lfs.2018.12.029. Epub 2018 Dec 20. PMID: 30578866.
[12] Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest. 2004 Dec; 34(12):785-96. Doi: 10.1111/j.1365-2362.2004.01429. x. PMID: 15606719.
[13] Zhang Y, Wada J, Hashimoto I, Eguchi J, Yasuhara A, Kanwar YS, Shikata K, Makino H. Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. J Am Soc Nephrol. 2006 Apr; 17(4):1090-101.Doii: 10.1681/ASN. 2005111148. Epub 2006 Mar 1. PMID: 16510762.
[14] Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, Biemann R, Stoyanov S, Reymann K, Söderkvist P, Groß O, Schwenger V, Pahernik S, Nawroth PP, Gröne HJ, Madhusudhan T, Isermann B. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 2015 Jan; 87(1):74-84. Doi: 10.1038/ki. 2014.271. Epub 2014 Jul 30. PMID: 25075770; PMCID: PMC4284813.
[15] Qi H, Casalena G, Shi S, Yu L, Ebefors K, Sun Y, Zhang W, D'Agati V, Schlondorff D, Haraldsson B, Böttinger E, Daehn I. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility. Diabetes. 2017 Mar; 66(3):763-778. Doi: 10.2337/db16-0695. Epub 2016 Nov 29. PMID: 27899487; PMCID: PMC5319717.
[16] Liang Y, Liu H, Fang Y, Lin P, Lu Z, Zhang P, Jiao X, Teng J, Ding X, Dai Y. Salvianolate ameliorates oxidative stress and podocyte injury through modulation of NOX4 activity in db/db mice. J Cell Mol Med. 2021 Jan; 25(2):1012-1023. Doi: 10.1111/jcmm. 16165. Epub 2020 Dec 17. PMID: 33332718; PMCID: PMC7812253.
[17] Jiao X, Li Y, Zhang T, Liu M, Chi Y. Role of Sirtuin3 in high glucose-induced apoptosis in renal tubular epithelial cells. Biochem Biophys Res Commun. 2016 Nov 18; 480(3):387-393.Doi: 10.1016/j.bbrc 2016.10.060. Epub 2016 Oct 20. PMID: 27773814.
[18] Wang Y, Zhang X, Yao H, Chen X, Shang L, Li P, Cui X, Zeng J. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice. J Biol Chem. 2022 Mar; 298(3) 101660 . Doi: 10.1016/j.jbc. 2022.101660. Epub 2022 Feb 4. PMID: 35124006; PMCID: PMC8881667.
[19] Amartuvshin O, Lin CH, Hsu SC, Kao SH, Chen A, Tang WC, Chou HL, Chang DL, Hsu YY, Hsiao BS, Rastegari E, Lin KY, Wang YT, Yao CK, Chen GC, Chen BC, Hsu HJ. Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell. 2020 Aug;19(8):e13191. doi: 10.1111/acel.13191. Epub 2020 Jul 14. PMID: 32666649; PMCID: PMC7431834.
[20] Wai T, Langer T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol Metab. 2016 Feb 27(2):105-117. Doi: 10.1016/j.tem. 2015.12.001. Epub 2016 Jan 2. PMID: 26754340.
[21] Sun L, Xie P, Wada J, Kashihara N, Liu Fu, Zhao Y, Kumar D, Chugh SS, Danesh FR, Kanwar YS. Rap1b GTPase ameliorates glucose-induced mitochondrial dysfunction. J Am Soc Nephrol. 2008 Dec; 19(12):2293-301. Doi: 10.1681/ASN. 2008030336. Epub 2008 Aug 27. PMID: 18753253; PMCID: PMC2588105.
[22] Ayanga BA, Badal SS, Wang Y, Galvan DL, Chang BH, Schumacker PT, Danesh FR. Dynamin-Related Protein 1 Deficiency Improves Mitochondrial Fitness and Protects against Progression of Diabetic Nephropathy. J Am Soc Nephrol. 2016 Sep; 27(9):2733-47. Doi: 10.1681/ASN. 2015101096. Epub 2016 Jan 29. PMID: 26825530; PMCID: PMC5004662.
[23] Sheng J, Li H, Dai Q, Lu C, Xu M, Zhang J, Feng J.NR4A1 Promotes Diabetic Nephropathy by Activating Mff-Mediated Mitochondrial Fission and Suppressing Parkin-Mediated Mitophagy. Cell Physiol Biochem. 2018 48(4):1675-1693. Doi: 10.1159/000492292. Epub 2018 Aug 3. PMID: 30077998.
[24] Guo K, Lu J, Huang Y, Wu M, Zhang L, Yu H, Zhang M, Bao Y, He JC, Chen H, Jia W. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS One. 2015 Apr 810(4)e0125176. Doi: 10.1371/journal.pone0125176. PMID: 25853493; PMCID: PMC4390193.
[25] Lee SY, Kang JM, Kim DJ, Park SH, Jeong HY, Lee YH, Kim YG, Yang DH, Lee SH PGC1α Activators Mitigate Diabetic Tubulopathy by Improving Mitochondrial Dynamics and Quality Control. J Diabetes Res. 2017 20176483572.6483572. Doi: 10.1155/2017/6483572. Epub 2017 Mar 20. PMID: 28409163; PMCID: PMC5376939.
[26] Hickey FB, Corcoran JB, Griffin B, Bhreathnach U, Mortiboys H, Reid HM, Andrews D, Byrne S, Furlong F, Martin F, Gordon C, Murphy M.IHG-1 increases mitochondrial fusion and bioenergetic function. Diabetes. 2014 Dec 63(12):4314-25. Doi: 10.2337/db13-1256. Epub 2014 Jul 9. PMID: 25008184.
[27] Gao P, Yang M, Chen X, Xiong S, Liu J, Sun L. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Clin Sci (Lond). 2020 Apr 17 134 (7):677-694. Doi: 10.1042/CS20200005. PMID: 32167139.
[28] West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017 Jun;17(6):363-375. doi: 10.1038/nri.2017.21. Epub 2017 Apr 10. PMID: 28393922; PMCID: PMC7289178.
[29] Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J; Lab for Trauma and Surgical Infections. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci. 2019 Nov 1; 236116464.116464. Doi: 10.1016/j.lfs. 2019.05.020. Epub 2019 May 9. PMID: 31078546.
[30] Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol. 2006 May;57(5):545-53. doi: 10.1007/s00280-005-0111-7. Epub 2005 Sep 21. PMID: 16175394.
[31] Altered Mitochondrial Function, Mitochondrial DNA and Reduced Metabolic Flexibility in Patients With Diabetic Nephropathy.
[32] Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility.
[33] Wei PZ, Kwan BC, Chow KM, Cheng PM, Luk CC, Li PK, Szeto CC. Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy. Nephrol Dial Transplant. 2018 May 1;33(5):784-788. doi: 10.1093/ndt/gfx339. PMID: 29301017.
[34] Jiang Hong,Shao Xue,Jia Sha et al. The Mitochondria-Targeted Metabolic Tubular Injury in Diabetic Kidney Disease.[J] .Cell Physiol Biochem, 2019, 52: 156-171.
[35] Czajka A, Ajaz S, Gnudi L, Parsade CK, Jones P, Reid F, Malik AN. Altered Mitochondrial Function, Mitochondrial DNA and Reduced Metabolic Flexibility in Patients With Diabetic Nephropathy. EBioMedicine. 2015 Apr 11; 2(6):499-512. Doi: 10.1016/j.ebiom. 2015.04.002. PMID: 26288815; PMCID: PMC4534759.
[36] Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, Muqit MM. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012 May;2(5):120080. doi: 10.1098/rsob.120080. PMID: 22724072; PMCID: PMC3376738.
[37] Zhao Y, Guo Y, Jiang Y, Zhu X, Liu Y, Zhang X. Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem Biophys Res Commun. 2017 Dec 9; 494(1-2):42-50. Doi: 10.1016/j.bbrc. 2017.10.088. Epub 2017 Oct 21. PMID: 29061302.
[38] Huang C, Zhang Y, Kelly DJ, Tan CY, Gill A, Cheng D, Braet F, Park JS, Sue CM, Pollock CA, Chen XM. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci Rep. 2016 Jul 6;6:29196. doi: 10.1038/srep29196. PMID: 27381856; PMCID: PMC4933928.
[39] Chen K, Feng L, Hu W, Chen J, Wang X, Wang L, He Y. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB J. 2019 Mar; 33(3):4571-4585. Doi: 10.1096/fj. 201801749RRR. Epub 2018 Dec 20. PMID: 30571313.
[40] Han YC, Tang SQ, Liu Yu, Li AM, Zhan M, Yang M, Song N, Zhang W, Wu XQ, Peng CH, Zhang H, Yang S.AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 2021 Oct 9; 12(10)925.Doi: 10.1038/s41419-021-04184-8. PMID: 34628484; PMCID: PMC8502176.
[41] Lu C, Wu B, Liao Z, Xue M, Zou Z, Feng J, Sheng J.DUSP1 overexpression attenuates renal tubular mitochondrial dysfunction by restoring Parkin-mediated mitophagy in diabetic nephropathy. Biochem Biophys Res Commun. 2021 Jun 25; 559:141-147. Doi: 10.1016/j.bbrc. 2021.04.032. Epub 2021 Apr 30. PMID: 33940385.
[42] Liu L, Bai F, Song H, Xiao R, Wang Y, Yang H, Ren X, Li S, Gao L, Ma C, Yang X, Liang X. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy. Redox Biol. 2022 Apr;50:102260. doi: 10.1016/j.redox.2022.102260. Epub 2022 Feb 7. Erratum in: Redox Biol. 2022 Mar 29;:102302. PMID: 35152003; PMCID: PMC8844679.