Welcome to Francis Academic Press

Academic Journal of Medicine & Health Sciences, 2022, 3(2); doi: 10.25236/AJMHS.2022.030209.

Mapping Aging Biomarkers and Pathways Using Proteomics

Author(s)

Tingyi Cui1, Ruofei Zhang2

Corresponding Author:
Tingyi Cui
Affiliation(s)

1The High School Affiliated to Renmin University of China, Beijing, China

2Beijing 21st Century International School, Beijing, China

Abstract

Aging is the leading factor in many diseases. During aging, a lot of proteins and pathways are dramatically changed, which may serve as potential aging biomarkers and targets for anti-aging drug development. In this review, we summarize the current progress in aging-related biomarkers and pathways that have been identified by proteomics. We find that many proteins in metabolism pathways are involved in aging process, which have a positive- or a negative-correlation. Changes in many   have strong relationship with aging, including mTOR pathway, pro-inflammatory pathway, insulin/insulin-like signaling pathway, mitochondrial function pathway.

Keywords

Aging, Protein, Proteomics, Biomarker

Cite This Paper

Tingyi Cui, Ruofei Zhang. Mapping Aging Biomarkers and Pathways Using Proteomics. Academic Journal of Medicine & Health Sciences (2022) Vol. 3, Issue 2: 52-57. https://doi.org/10.25236/AJMHS.2022.030209.

References

[1] Wyss-Coray, T. (2016) Ageing, neurodegeneration and brain rejuvenation. Nature, 539, 180-186.

[2] Yi, M., Ma, Y., Zhu, S., Luo, C., Chen, Y., Wang, Q., and Deng, H. (2020) Comparative proteomic analysis identifies biomarkers for renal aging. Aging (Albany NY), 12, 21890-21903.

[3] Rutledge, J., Oh, H., and Wyss-Coray, T. (2022) Measuring biological age using omics data. Nat Rev Genet.

[4] Guerville, F., De Souto Barreto, P., Ader, I., Andrieu, S., Casteilla, L., Dray, C., Fazilleau, N., Guyonnet, S., Langin, D., Liblau, R., Parini, A., Valet, P., Vergnolle, N., Rolland, Y., and Vellas, B. (2020) Revisiting the Hallmarks of Aging to Identify Markers of Biological Age. J Prev Alzheimers Dis, 7, 56-64.

[5] Xia, X., Chen, W., McDermott, J., and Han, J.J. (2017) Molecular and phenotypic biomarkers of aging. F1000Res, 6, 860.

[6] Deary, I.J., Corley, J., Gow, A.J., Harris, S.E., Houlihan, L.M., Marioni, R.E., Penke, L., Rafnsson, S.B., and Starr, J.M. (2009) Age-associated cognitive decline. Br Med Bull, 92, 135-52.

[7] Shuken, S.R., Rutledge, J., Iram, T., Losada, P.M., Wilson, E.N., Andreasson, K.I., Leib, R.D., and Wyss-Coray, T. (2022) Limited proteolysis–mass spectrometry reveals aging-associated changes in cerebrospinal fluid protein abundances and structures. Nature Aging, 2, 379-388.

[8] Anisimov, V.N. and Bartke, A. (2013) The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol, 87, 201-23.

[9] Escobar, K.A., Cole, N.H., Mermier, C.M., and VanDusseldorp, T.A. (2019) Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell, 18, e12876.

[10] Jeon, S.M. (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med, 48, e245.

[11] Gebert, N., Cheng, C.W., Kirkpatrick, J.M., Di Fraia, D., Yun, J., Schadel, P., Pace, S., Garside, G.B., Werz, O., Rudolph, K.L., Jasper, H., Yilmaz, O.H., and Ori, A. (2020) Region-Specific Proteome Changes of the Intestinal Epithelium during Aging and Dietary Restriction. Cell Rep, 31, 107565.

[12] Lehmann, S.G., Bourgoin-Voillard, S., Seve, M., and Rachidi, W. (2017) Tubulin Beta-3 Chain as a New Candidate Protein Biomarker of Human Skin Aging: A Preliminary Study. Oxid Med Cell Longev, 2017, 5140360.

[13] Ozols, M., Eckersley, A., Mellody, K.T., Mallikarjun, V., Warwood, S., O'Cualain, R., Knight, D., Watson, R.E.B., Griffiths, C.E.M., Swift, J., and Sherratt, M.J. (2021) Peptide location fingerprinting reveals modification-associated biomarker candidates of ageing in human tissue proteomes. Aging Cell, 20, e13355.

[14] Kelley, R.C., McDonagh, B., and Ferreira, L.F. (2018) Advanced aging causes diaphragm functional abnormalities, global proteome remodeling, and loss of mitochondrial cysteine redox flexibility in mice. Exp Gerontol, 103, 69-79.

[15] Bajwa, P., Nagendra, P.B., Nielsen, S., Sahoo, S.S., Bielanowicz, A., Lombard, J.M., Wilkinson, J.E., Miller, R.A., and Tanwar, P.S. (2016) Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium. Oncotarget, 7, 19214-27.

[16] Curran, S.P. and Ruvkun, G. (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet, 3, e56.

[17] Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S.J., and Kenyon, C. (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 6, 95-110.

[18] Kaeberlein, M., Powers, R.W., 3rd, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310, 1193-6.

[19] Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol, 14, 885-90.

[20] Zid, B.M., Rogers, A.N., Katewa, S.D., Vargas, M.A., Kolipinski, M.C., Lu, T.A., Benzer, S., and Kapahi, P. (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell, 139, 149-60.

[21] Weichhart, T. (2018) mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology, 64, 127-134.

[22] Angelidis, I., Simon, L.M., Fernandez, I.E., Strunz, M., Mayr, C.H., Greiffo, F.R., Tsitsiridis, G., Ansari, M., Graf, E., Strom, T.M., Nagendran, M., Desai, T., Eickelberg, O., Mann, M., Theis, F.J., and Schiller, H.B. (2019) An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun, 10, 963.

[23] Tanaka, T., Biancotto, A., Moaddel, R., Moore, A.Z., Gonzalez-Freire, M., Aon, M.A., Candia, J., Zhang, P., Cheung, F., Fantoni, G., consortium, C.H.I., Semba, R.D., and Ferrucci, L. (2018) Plasma proteomic signature of age in healthy humans. Aging Cell, 17, e12799.

[24] Cohen, A.A. (2018) Aging across the tree of life: The importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta Mol Basis Dis, 1864, 2680-2689.

[25] Takemon, Y., Chick, J.M., Gerdes Gyuricza, I., Skelly, D.A., Devuyst, O., Gygi, S.P., Churchill, G.A., and Korstanje, R. (2021) Proteomic and transcriptomic profiling reveal different aspects of aging in the kidney. Elife, 10.

[26] Folsom, A.R., Wu, K.K., Davis, C.E., Conlan, M.G., Sorlie, P.D., and Szklo, M. (1991) Population correlates of plasma fibrinogen and factor VII, putative cardiovascular risk factors. Atherosclerosis, 91, 191-205.

[27] Morley, J.F. and Morimoto, R.I. (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell, 15, 657-64.

[28] Barbieri, M., Bonafe, M., Franceschi, C., and Paolisso, G. (2003) Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab, 285, E1064-71.

[29] Wrigley, S., Arafa, D., and Tropea, D. (2017) Insulin-Like Growth Factor 1: At the Crossroads of Brain Development and Aging. Front Cell Neurosci, 11, 14.

[30] Martins, R., Lithgow, G.J., and Link, W. (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell, 15, 196-207.

[31] Brignull, H.R., Moore, F.E., Tang, S.J., and Morimoto, R.I. (2006) Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci, 26, 7597-606.

[32] Morley, J.F., Brignull, H.R., Weyers, J.J., and Morimoto, R.I. (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 99, 10417-22.

[33] Satyal, S.H., Schmidt, E., Kitagawa, K., Sondheimer, N., Lindquist, S., Kramer, J.M., and Morimoto, R.I. (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 97, 5750-5.

[34] Morimoto, R.I. (2020) Cell-Nonautonomous Regulation of Proteostasis in Aging and Disease. Cold Spring Harb Perspect Biol, 12.

[35] Dai, D.F., Karunadharma, P.P., Chiao, Y.A., Basisty, N., Crispin, D., Hsieh, E.J., Chen, T., Gu, H., Djukovic, D., Raftery, D., Beyer, R.P., MacCoss, M.J., and Rabinovitch, P.S. (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell, 13, 529-39.

[36] Fang, E.F., Kassahun, H., Croteau, D.L., Scheibye-Knudsen, M., Marosi, K., Lu, H., Shamanna, R.A., Kalyanasundaram, S., Bollineni, R.C., Wilson, M.A., Iser, W.B., Wollman, B.N., Morevati, M., Li, J., Kerr, J.S., Lu, Q., Waltz, T.B., Tian, J., Sinclair, D.A., Mattson, M.P., Nilsen, H., and Bohr, V.A. (2016) NAD(+) Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metab, 24, 566-581.

[37] Goody, M.F. and Henry, C.A. (2018) A need for NAD+ in muscle development, homeostasis, and aging. Skelet Muscle, 8, 9.

[38] Bogan, K.L. and Brenner, C. (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr, 28, 115-30.

[39] Cauley, J.A., Barbour, K.E., Harrison, S.L., Cloonan, Y.K., Danielson, M.E., Ensrud, K.E., Fink, H.A., Orwoll, E.S., and Boudreau, R. (2016) Inflammatory Markers and the Risk of Hip and Vertebral Fractures in Men: the Osteoporotic Fractures in Men (MrOS). J Bone Miner Res, 31, 2129-2138.

[40] Gao, Q., Camous, X., Lu, Y.X., Lim, M.L., Larbi, A., and Ng, T.P. (2016) Novel inflammatory markers associated with cognitive performance: Singapore Longitudinal Ageing Studies. Neurobiol Aging, 39, 140-6.

[41] Schei, J., Stefansson, V.T., Eriksen, B.O., Jenssen, T.G., Solbu, M.D., Wilsgaard, T., and Melsom, T. (2017) Association of TNF Receptor 2 and CRP with GFR Decline in the General Nondiabetic Population. Clin J Am Soc Nephrol, 12, 624-634.