Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2023, 5(1); doi: 10.25236/IJFM.2023.050106.

Medical Applications of High-throughput Protein Arrays

Author(s)

Chen Junlin1, Li Rui2

Corresponding Author:
Chen Junlin
Affiliation(s)

1School of Science& Technology, Hong Kong Metropolitan University, Hong Kong, 999077, China

2School of Graduate Studies, Hong Kong Lingnan University, Hong Kong, 999077, China

Abstract

A solution containing the ligand is incubated with an immobilized protein of interest on a solid support. Unbound ligands are washed away, and bound ligands are detected. Protein affinity analysis can be used to characterize protein-protein interactions and to screen for inhibitors. Despite being low-throughput, protein microarray/S.E.L.D.I. mass spectrometry (Ciphergen, Fremont, CA, U.S.A.) has been used for differential analysis and protein marker discovery in infectious diseases and cancer. Protein sequencing methods can accurately differentiate ovarian cancer from non-cancers in serum by using proteomic approaches for high-risk and general populations. It can be used to screen for cancer and autoimmune diseases like systemic lupus erythematosus. Thus, high-throughput sequencing technology is widely used in various fields of laboratory medicine, and if some methods and techniques are combined, test results can be accurate and specific.

Keywords

High-throughput protein arrays; Molecular biology; Proteomics; Immunological assays

Cite This Paper

Chen Junlin, Li Rui. Medical Applications of High-throughput Protein Arrays. International Journal of Frontiers in Medicine (2023), Vol. 5, Issue 1: 34-38. https://doi.org/10.25236/IJFM.2023.050106.

References

[1] Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of Cancer Immunosurveillance and immunoediting. Immunity, 21(2), 137–148. https://doi.org/10. 1016/j. immuni. 2004.07.017 

[2] Vesely, M.D. et al. (2011) "Natural innate and adaptive immunity to cancer," Annual Reviewof Immunology, 29(1), pp. 235–271. Available at: https://doi.org/10.1146/annurev-immunol-031210-101324. 

[3] Stewart, T.J. and Abrams, S.I. (2008) "How tumours escape mass destruction," Oncogene, 27(45), pp. 5894–5903. Available at: https://doi.org/10.1038/onc.2008.268. 

[4] Weaver, W.M. et al. (2013) Advances in high-throughput single-cell microtechnologies, Current Opinion in Biotechnology. Elsevier Current Trends. Available at: https://www.sciencedirect. com/science/article/pii/S0958166913006654?via%3Dihub (Accessed: October 28, 2022). 

[5] Kingsmore, S.F. (2006) "Multiplexed protein measurement: Technologies and applications of protein and antibody arrays," Nature Reviews Drug Discovery, 5(4), pp. 310–321. Available at: https:// doi.org/10.1038/nrd2006. 

[6] Reddy, S.T. and Georgiou, G. (2011) "Systems analysis of adaptive immunity by utilization of high-throughput technologies," Current Opinion in Biotechnology, 22(4), pp. 584–589. Available at: https://doi.org/10.1016/j.copbio.2011.04.015. 

[7] Lin, Q. et al. (2020) "Microfluidic immunoassays for sensitive and simultaneous detection of IGG/IGM/antigen of SARS-COV-2 within 15 min," Analytical Chemistry, 92(14), pp. 9454–9458. Available at: https://doi.org/10.1021/acs.analchem.0c01635. 

[8] de Assis, R.R. et al. (2020) "Analysis of SARS-COV-2 antibodies in COVID-19 convalescent blood using a coronavirus antigen microarray." Available at: https://doi.org/10.1101/2020.04.15.043364. 

[9] Khan, S. et al. (2020) "Analysis of serologic cross-reactivity between common human coronaviruses and SARS-COV-2 using coronavirus antigen microarray." Available at: https://doi.org/10. 1101/2020.03.24.006544.

[10] M.P.; P.T.L.S. (no date) Chronic lymphocytic leukemia: Prognostic factors and impact on treatment, Discovery medicine. U.S. National Library of Medicine. Available at: https://pubmed.ncbi.nlm.nih.gov/21356166/

[11] Puente, X.S. et al. (2011) "Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia," Nature, 475(7354), pp. 101–105. Available at: https://doi.org/10. 1038/ nature10113. 

[12] Wang, L. et al. (2011) "sf3b1and other novel cancer genes in chronic lymphocytic leukemia," New England Journal of Medicine, 365(26), pp. 2497–2506. Available at: https://doi.org/10. 1056/ nejmoa1109016. 

[13] Stephens PJ;Greenman CD;Fu B;Yang F;Bignell GR;Mudie LJ;Pleasance E.D.;Lau KW;Beare D;Stebbings LA;McLaren S;Lin ML;McBride DJ;Varela I;Nik-Zainal S;Leroy C;Jia M;Menzies A;Butler AP;Teague JW;Quail MA;Burton J;Swerdlow H;Carter NP;Morsberger LA;Iacobuzio-D (no date) Massive genomic rearrangement acquired in a single catastrophic event during cancer development, Cell. U.S. National Library of Medicine. Available at: https://pubmed.ncbi. nlm.nih. gov/21215367/

[14] Landau, D.A. and Wu, C.J. (2013) "Chronic lymphocytic leukemia: Molecular heterogeneity revealed by high-throughput genomics," Genome Medicine, 5(5), p. 47. Available at: https://doi.org/ 10.1186/gm451. 

[15] Ho, D. (2020) "Artificial Intelligence in cancer therapy," Science, 367(6481), pp. 982–983. Available at: https://doi.org/10.1126/science.aaz3023. 

[16] Zhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y., Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y., Yang, H.-Y., Huang, Q.-H., Zhou, G.-B., Tong, J.-H., Zhang, Y., Wu, J.-H., Hu, H.-Y., de Thé, H., … Chen, Z. (2010). Arsenic trioxide controls the fate of the PML-RARΑ oncoprotein by directly binding PML. Science, 328(5975), 240–243. https://doi.org/10. 1126/science.1183424 

[17] Zhou, G.-B., Zhao, W.-L., Wang, Z.-Y., Chen, S.-J., & Chen, Z. (2005). Retinoic acid and arsenic for treating acute promyelocytic leukemia. PLoS Medicine, 2(1). https://doi.org/10.1371/ journal. pmed.0020012 

[18] Kallioniemi, O.-P. (2001). Tissue microarray technology for high-throughput molecular profiling of cancer. Human Molecular Genetics, 10(7), 657–662. https://doi.org/10.1093/hmg/10.7.657 

[19] Bucher, C., Tohorst, J., Kononen, J., Haas, P., Askaa, J., Godtfredsen, S.E., Bauer, K.D., Seelig, S., Kallioniemi, O.P. and Sauter, G. (2000) Automated, high-throughput tissue microarray analysis for assessing the significance of Her-2 involvement in breast cancer. J. Clin. Oncol., Annual Meeting, 2338.

[20] Bubendorf, L., Kononen, J., Barlund, M., Kallioniemi, A., Grigorian, A., Sauter, G., Dougherty, E.R. and Kallioniemi, O.P. (1999) Tissue microarray FISH and digital imaging: Towards automated analysis of thousands of tumors with thousands of probes.  Am. J. Hum. Genet, 65 (suppl.), 316.

[21] Walter, G., Büssow, K., Lueking, A., & Glökler, J. (2002). High-throughput protein arrays: Prospects for Molecular Diagnostics. Trends in Molecular Medicine, 8(6), 250–253. https://doi.org/10.1016/s1471-4914(02)02352-3 

[22] Walter, G., Büssow, K., Cahill, D., Lueking, A., & Lehrach, H. (2000). Protein arrays for gene expression and molecular interaction screening. Current Opinion in Microbiology, 3(3), 298–302. https://doi.org/10.1016/s1369-5274(00)00093-x 

[23] de Wildt, R. M., Mundy, C. R., Gorick, B. D., & Tomlinson, I. M. (2000). Antibody arrays for high-throughput screening of antibody–antigen interactions. Nature Biotechnology, 18(9), 989–994. https://doi.org/10.1038/79494 

[24] Fung, E. T., Thulasiraman, V., Weinberger, S. R., & Dalmasso, E. A. (2001). Protein biochips for differential profiling. Current Opinion in Biotechnology, 12(1), 65–69. https://doi.org/10.1016/s0958-1669(00)00167-1 

[25] Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., & Liotta, L. A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. The Lancet, 359(9306), 572–577. https://doi.org/10.1016/s0140-6736(02) 07746-2