Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2023, 5(3); doi: 10.25236/IJFM.2023.050314.

Iron accumulation in ferroptosis and the role of lipid peroxidation in osteoarthritis

Author(s)

Tinghe Shang1, Zhongcheng Gong2

Corresponding Author:
Zhongcheng Gong
Affiliation(s)

1Oncological Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Xinjiang Medical University, School/Hospital of Stomatology Xinjiang Medical University, Urumqi, 830054, Xinjiang Uygur Autonomous Region, China

2Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, Xinjiang Uygur Autonomous Region, China

Abstract

Ferroptosis is a recently discovered mode of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels, but this process was found to be inhibited by ferroptosis inhibitor-specific reverse. Osteoarthritis (OA) is the most common degenerative joint disease characterized by complex pathogenesis including mechanical overload, elevated levels of inflammatory mediators, metabolic alterations, and cellular senescence and death. Since iron accumulation and oxidative stress are common pathological features of OA, the role of ferroptosis in OA has been extensively explored. Accumulating evidence indicates that iron homeostasis and lipid peroxidation are closely related to the pathogenesis of OA. This article will focus on the mechanisms of ferroptosis and the role of iron homeostasis and lipid peroxidation in the pathogenesis of OA, summarizing recent evidence.

Keywords

ferroptosis; iron accumulation; lipid peroxidation; osteoarthritis

Cite This Paper

Tinghe Shang, Zhongcheng Gong. Iron accumulation in ferroptosis and the role of lipid peroxidation in osteoarthritis. International Journal of Frontiers in Medicine (2023), Vol. 5, Issue 3: 77-82. https://doi.org/10.25236/IJFM.2023.050314.

References

[1] Hunter D.J., March L., Chew M. Osteoarthritis in 2020 and beyond: A Lancet Commission. Lancet. 2020; 396: 1711-1712. 

[2] Hunter D.J., Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393: 1745-1759.

[3] Jiang Y. Osteoarthritis year in review 2021: Biology. Osteoarthr. Cartil.2022; 30: 207-215. 

[4] Zheng L., Zhang Z., Sheng P., Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev. 2021; 66: 101249.

[5] Komori T. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes. Int.J. Mol. Sci. 2016; 17: 2045. 

[6] Abusarah J., Bentz M., Benabdoune H., Rondon P.E., Shi Q., Fernandes J.C., Fahmi H., Benderdour M. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm. Res. 2017; 66: 637-651.

[7] Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., Patel D.N., Bauer A.J., Cantley A.M., Yang W.S., et al.Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell. 2012; 149: 1060-1072. 

[8] Yao X., Sun K., Yu S., Luo J., Guo J., Lin J., Wang G., Guo Z., Ye Y., Guo F. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J. Orthop. Transl. 2021; 27: 33-43.

[9] Miao Y., Chen Y., Xue F., Liu K., Zhu B., Gao J., Yin J., Zhang C., Li G. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine. 2022; 76: 103847.

[10] Yagoda N., von Rechenberg M., Zaganjor E., Bauer A.J., Yang W.S. Fridman D.J., Wolpaw A.J., Smukste I., Peltier J.M., Boniface J.J., et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007; 447: 864-868. 

[11] Dixon S.J., Stockwell B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014; 10: 9-17. 

[12] Wang C.Y., Babitt J.L. Liver iron sensing and body iron homeostasis. Blood. 2019; 133: 18-29.

[13] Gunshin H., Fujiwara Y., Custodio A.O., Direnzo C., Robine S., Andrews N.C. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J. Clin. Investig. 2005; 115: 1258-1266. 

[14] Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S.J., Moynihan J. Paw B.H., Drejer A., Barut B., Zapata A., et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000; 403: 776-781. 

[15] Vulpe C.D., Kuo Y.M., Murphy T.L., Cowley L., Askwith C., Libina N., Gitschier J., Anderson G.J. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 1999; 21: 195-199.

[16] Nemeth E., Ganz T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021; 22: 6493. 

[17] Anderson G.J., Frazer D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 2017;106((Suppl. S6)):1559s-1566s. 

[18] Ohgami R.S., Campagna D.R., Greer E.L., Antiochos B., McDonald A., Chen J., Sharp J.J., Fujiwara Y., Barker J.E., Fleming M.D. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 2005; 37: 1264-1269. 

[19] Torti F.M., Torti S.V. Regulation of ferritin genes and protein. Blood. 2002; 99: 3505-3516. 

[20] Andrews N.C. Probing the iron pool. Focus on “Detection of intracellular iron by its regulatory effect” Am. J. Physiol. Cell Physiol. 2004; 287: C1537-C1538. 

[21] Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., Tang D. Ferroptosis: Process and function. Cell Death Differ. 2016; 23: 369-379. 

[22] Feng H., Schorpp K., Jin J., Yozwiak C.E., Hoffstrom B.G., Decker A.M., Rajbhandari P., Stokes M.E., Bender H.G., Csuka J.M., et al. Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Rep. 2020; 30: 3411-3423.

[23] Kong N., Chen X., Feng J., Duan T., Liu S., Sun X., Chen P., Pan T., Yan L., Jin T., et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm. Sin. B. 2021; 11: 4045-4054.

[24] Bao W.D., Pang P., Zhou X.T., Hu F., Xiong W., Chen K., Wang J., Wang F., Xie D., Hu Y.Z., et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021; 28: 1548-1562. 

[25] Ayala A., Muñoz M.F., Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014; 2014: 360438. 

[26] Yin H., Xu L., Porter N.A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 2011; 111: 5944-5972. 

[27] Zheng, J. and M. Conrad, The Metabolic Underpinnings of Ferroptosis. Cell Metab, 2020. 32(6): p. 920-937.

[28] Yang H., Hu Y., Weng M., Liu X., Wan P., Hu Y., Ma M., Zhang Y., Xia H., Lv K. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J. Adv. Res. 2022; 37: 91-106. 

[29] Park M.W., Cha H.W., Kim J., Kim J.H., Yang H., Yoon S., Boonpraman N., Yi S.S., Yoo I.D., Moon J.S. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox. Biol. 2021; 41: 101947.

[30] Liu P., Feng Y., Li H., Chen X., Wang G., Xu S., Li Y., Zhao L. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol. Biol. Lett. 2020; 25: 10.

[31] Zheng J., Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab. 2020; 32: 920–937. 

[32] Bridges R.J., Natale N.R., Patel S.A. System xc− cystine/glutamate antiporter: An update on molecular pharmacology and roles within the CNS. Br. J. Pharm. 2012; 165: 20-34. 

[33] Sun K., Guo Z., Hou L., Xu J., Du T., Xu T., Guo F. Iron Homeostasis in Arthropathies: From Pathogenesis to Therapeutic Potential. Ageing Res. Rev. 2021; 72: 101481. 

[34] Yazar M., Sarban S., Kocyigit A., Isikan U.E. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol. Trace Elem. Res. 2005; 106: 123-132.

[35] Ogilvie-Harris D.J., Fornaiser V.L. Synovial iron deposition in osteoarthritis and rheumatoid arthritis. J. Rheumatol. 1980; 7: 30-36.

[36] Zhou J., Liu C., Sun Y., Francis M., Ryu M.S., Grider A., Ye K. Genetically predicted circulating levels of copper and zinc are associated with osteoarthritis but not with rheumatoid arthritis. Osteoarthr. Cartil.2021; 29: 1029-1035. 

[37] Liu Y., Yau M.S., Yerges-Armstrong L.M., Duggan D.J., Renner J.B., Hochberg M.C., Mitchell B.D., Jackson R.D., Jordan J.M. Genetic Determinants of Radiographic Knee Osteoarthritis in African Americans. J. Rheumatol. 2017; 44: 1652-1658. 

[38] Nugzar O., Zandman-Goddard G., Oz H., Lakstein D., Feldbrin Z., Shargorodsky M. The role of ferritin and adiponectin as predictors of cartilage damage assessed by arthroscopy in patients with symptomatic knee osteoarthritis. Best Pract. Res Clin. Rheumatol. 2018; 32: 662-668.

[39] Kennish L., Attur M., Huang X., Lai Y., Liu C., Krasnokutsky S., Samuels J., Abramson S.B. Iron Overload and Hemochromatosis (HFE) Mutation Correlate with Clinical Outcomes in an Osteoarthritis Cohort. Osteoarthr. Cartil. 2011; 19: S143-S144.

[40] Wu L., Si H., Zeng Y., Wu Y., Li M., Liu Y., Shen B. Association between Iron Intake and Progression of Knee Osteoarthritis. Nutrients. 2022; 14: 1674.

[41] Shah R., Raska K., Jr., Tiku M.L. The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage: A pathogenic role in osteoarthritis. Arthritis. Rheum. 2005; 52: 2799-2807. 

[42] Gavriilidis C., Miwa S., von Zglinicki T., Taylor R.W., Young D.A. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis. Rheum. 2013; 65: 378-387.

[43] Regan E.A., Bowler R.P., Crapo J.D. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr. Cartil.2008; 16: 515-521. 

[44] Maneesh M., Jayalekshmi H., Suma T., Chatterjee S., Chakrabarti A.,Singh T.A. Evidence for oxidative stress in osteoarthritis. Indian J. Clin. Biochem. 2005; 20: 129-130. 

[45] Hu Q., Zhang Y., Lou H., Ou Z., Liu J., Duan W., Wang H., Ge Y., Min J., Wang F., et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis. 2021; 12: 706.

[46] Sutipornpalangkul W., Morales N.P., Charoencholvanich K., Harnroongroj T. Lipid peroxidation, glutathione, vitamin E, and antioxidant enzymes in synovial fluid from patients with osteoarthritis. Int. J. Rheum. Dis. 2009; 12: 324-328. 

[47] Angthong C., Morales N.P., Sutipornpalangkul W., Khadsongkram A., Pinsornsak P., Pongcharoen B. Can levels of antioxidants in synovial fluid predict the severity of primary knee osteoarthritis: A preliminary study. Springerplus. 2013; 2: 652.