Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2023, 4(7); doi: 10.25236/AJMC.2023.040703.

Research progress of uranyl photocatalyst-promoted organic transformation

Author(s)

Haoran Xiong, Pengyu Li

Corresponding Author:
Haoran Xiong
Affiliation(s)

Beijing 21st Century International School, Beijing, China

Abstract

Nowadays, using uranium to enhance the quality of life is no longer a problem as controllable nuclear fission and other technologies have been invented. However, most forms of uranium in nature exist as U238 instead of U235. Unlike U235, U238 cannot generate chain nuclear fission, which means that it loses the most common use of uranium. But with the development of investigation in the realm of uranyl, a common compound of uranium, scientists have found uranyl could be used as an efficient photocatalyst, which could make use of U238. This study explores the photocatalyst potential of uranyl complexes and summarizes their role in promoting various organic reactions. This review sheds light on the mechanisms and applications of uranyl-catalysed organic transformations, providing insights into the ongoing development of sustainable and efficient catalysis.

Keywords

Uranyl-photocatalysis, photoredox catalysis, hydrogen atom transfer, C-H activation, oxygenation

Cite This Paper

Haoran Xiong, Pengyu Li. Research progress of uranyl photocatalyst-promoted organic transformation. Academic Journal of Materials & Chemistry (2023) Vol. 4, Issue 7: 13-20. https://doi.org/10.25236/AJMC.2023.040703.

References

[1] Keith, S., Faroon, O., Roney, N., Scinicariello, F., Wilbur, S., Ingerman, L., ... & Diamond, G. (2013). Toxicological profile for uranium. Nih.gov; Agency for Toxic Substances and Disease Registry (US). https://www.ncbi.nlm.nih.gov/books/NBK158805/

[2] Briner, W. E. (2006). The evolution of depleted uranium as an environmental risk factor: lessons from other metals. International Journal of Environmental Research and Public Health, 3(2), 129-135. https://doi.org/10.3390/ijerph2006030016

[3] Bleise, A., Danesi, P. R., & Burkart, W. (2003). Properties, use and health effects of depleted uranium (DU): a general overview. Journal of environmental radioactivity, 64(2-3), 93-112. https://doi.org/10. 1016/s0265-931x(02)00041-3

[4] “Uranyl Compounds - an Overview | ScienceDirect Topics.” Www.sciencedirect.com, Accessed 14 Aug. 2023.

[5] Maria Assunta Lacavalla, & Cisterna, B. (2022). Uranyl-Free Staining as a Suitable Contrasting Technique for Nuclear Structures at Transmission Electron Microscopy. Springer EBooks, 225–231. https://doi.org/10.1007/978-1-0716-2675-7_18

[6] Paterson-Beedle, M., Macaskie, L. E., Lee, C. H., Hriljac, J. A., Jee, K. Y., & Kim, W. H. (2006). Utilisation of a hydrogen uranyl phosphate-based ion exchanger supported on a biofilm for the removal of cobalt, strontium and caesium from aqueous solutions. Hydrometallurgy, 83(1-4), 141-145. https://doi.org/10.1016/j.hydromet.2006.03.020

[7] Yu, J., Zhao, C., Zhou, R., Gao, W., Wang, S., Liu, K., ... & Shi, W. (2020). Visible‐Light‐Enabled C− H Functionalization by a Direct Hydrogen Atom Transfer Uranyl Photocatalyst. Chemistry–A European Journal, 26(69), 16521-16529. https://doi.org/10.1002/chem.202003431

[8] Capaldo, L., Merli, D., Fagnoni, M., & Ravelli, D. (2019). Visible light uranyl photocatalysis: direct C–H to C–C bond conversion. ACS Catalysis, 9(4), 3054-3058. https://doi.org/ 10. 1021/ acscatal. 9b00287

[9] West, J. G., Bedell, T. A., & Sorensen, E. J. (2016). The Uranyl Cation as a Visible‐Light Photocatalyst for C (sp3)− H Fluorination. Angewandte Chemie International Edition, 55(31), 8923-8927. https://doi.org/10.1002/anie.201603149

[10] Mao, Y., Liu, Y., Yu, L., Ni, S., Wang, Y., & Pan, Y. (2021b). Uranyl-catalysed C–H alkynylation and olefination. Organic Chemistry Frontiers, 8(21), 5968–5974. https://doi.org/10.1039/d1qo00932j

[11] Li, Y., Rizvi, A., Hu, D., Sun, D., Gao, A., Zhou, Y., Li, J., & Jiang, X. (2019c). Selective Late‐Stage Oxygenation of Sulfides with Ground‐State Oxygen by Uranyl Photocatalysis. Angewandte Chemie, 58(38), 13499–13506. https://doi.org/10.1002/anie.201906080

[12] Zhou, Y., Hu, D., Li, D., & Jiang, X. (2021). Uranyl-photocatalyzed hydrolysis of diaryl ethers at ambient environment for the directional degradation of 4-O-5 lignin. JACS Au, 1(8), 1141-1146. https://doi.org/10.1021/jacsau.1c00168

[13] Hu, D., Zhou, Y., & Jiang, X. (2022). From aniline to phenol: carbon-nitrogen bond activation via uranyl photoredox catalysis. National Science Review, 9(6), nwab156. https://doi.org/ 10. 1093/ nsr/nwab156

[14] Meng, J., Zhou, Y., Li, D., & Jiang, X. (2023). Degradation of plastic wastes to commercial chemicals and monomers under visible light. Science Bulletin. doi: https://doi.org/10.1016/j.scib. 2023.06.024

[15] Zhang, X., Fevre, M., Jones, G. O., & Waymouth, R. M. (2018). Catalysis as an enabling science for sustainable polymers. Chemical reviews, 118(2), 839-885. https://doi.org/ 10.1021/ acs. chemrev. 7b00329

[16] Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782.

[17] Oh, S., & Stache, E. E. (2022). Chemical upcycling of commercial polystyrene via catalyst-controlled photooxidation. Journal of the American Chemical Society, 144(13), 5745-5749. https://doi.org/10.1021/jacs.2c01411

[18] Huang, Z., Shanmugam, M., Liu, Z., Brookfield, A., Bennett, E. L., Guan, R., ... & Xiao, J. (2022). Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. Journal of the American Chemical Society, 144(14), 6532–6542. https://doi. org/ 10.1021/jacs.2c01410