Welcome to Francis Academic Press

Academic Journal of Medicine & Health Sciences, 2024, 5(1); doi: 10.25236/AJMHS.2024.050104.

Single-Cell Automated Annotation Algorithm Based on Reference Expression Profiles


Xiaoqian Huang1, Ruiqi Liu1, Yanmiao Huang2, Xuexia Huang3, Xiaozhou Chen1

Corresponding Author:
Xuexia Huang

1School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, China

2School of Art and Design, Weifang Institute of Technology, Weifang, China

3Department of Clinical Pharmacy, Dongchangfu District Maternal and Child Health Hospital of Liaocheng City, Liaocheng, China


In recent years, the rapid advancement of single-cell RNA sequencing (scRNA-seq) technology has provided a powerful tool for delving into the diversity of cellular populations, offering researchers a unique perspective to explore intracellular heterogeneity. This technology enables us to gain profound insights into the gene expression patterns of individual cells, unveiling latent heterogeneity within cell populations. Accurately predicting single-cell types is a crucial step in understanding the dynamics and functional impacts of cells. This paper aims to introduce the application of hypergeometric testing in gene set enrichment as a foundational tool for predicting single-cell types. In comparison to traditional gene expression analysis methods, scRNA-seq captures individual differences in each cell, presenting unprecedented opportunities for understanding development, diseases, and tissue functionality.


Single-cell, Auto annotation, Hypergeometric Test, Reference-based

Cite This Paper

Xiaoqian Huang, Ruiqi Liu, Yanmiao Huang, Xuexia Huang, Xiaozhou Chen. Single-Cell Automated Annotation Algorithm Based on Reference Expression Profiles. Academic Journal of Medicine & Health Sciences (2024), Vol. 5, Issue 1: 21-25. https://doi.org/10.25236/AJMHS.2024.050104.


[1] Slovin S, Carissimo A, Panariello F, et al. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview [J]. Methods Mol Biol. 2021;2284:343-365.

[2] Balzer MS, Ma Z, Zhou J, et al. How to Get Started with Single Cell RNA Sequencing Data Analysis [J]. J Am Soc Nephrol. 2021;32(6):1279-1292.

[3] Rossin EJ, Sobrin L, Kim LA. Single-cell RNA sequencing: An overview for the ophthalmologist[J]. Semin Ophthalmol. 2021;36(4):191-197.

[4] Hickey JW, Becker WR, Nevins SA, et al. Organization of the human intestine at single-cell resolution [J]. Nature. 2023;619(7970):572-584.

[5] Kim D, Chung KB, Kim TG. Application of single-cell RNA sequencing on human skin: Technical evolution and challenges[J]. J Dermatol Sci. 2020;99(2):74-81.

[6] Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing [J]. Mol Cell. 2015;58(4):610-620.

[7] Erfanian N, Heydari AA, Feriz AM, et al. Deep learning applications in single-cell genomics and transcriptomics data analysis[J]. Biomed Pharmacother. 2023;165:115077.

[8] Fan J, Slowikowski K, Zhang F. Single-cell transcriptomics in cancer: computational challenges and opportunities [J]. Exp Mol Med. 2020;52(9):1452-1465.

[9] Ke M, Elshenawy B, Sheldon H, et al. Single cell RNA-sequencing: A powerful yet still challenging technology to study cellular heterogeneity[J]. Bioessays. 2022;44(11):e2200084.

[10] Sullivan KE, Kendrick RM, Cembrowski MS. Elucidating memory in the brain via single-cell transcriptomics[J]. J Neurochem. 2021;157(4):982-992.

[11] Tumminello M, Bertolazzi G, Sottile G, et al. A multivariate statistical test for differential expression analysis [J]. Sci Rep. 2022;12(1):8265.

[12] Ziegenhain C, Vieth B, Parekh S, et al. Comparative Analysis of Single-Cell RNA Sequencing Methods [J]. Mol Cell. 2017;65(4):631-643 e4.

[13] Johannssen A, Chukhrova N, Castagliola P. Efficient algorithms for calculating the probability distribution of the sum of hypergeometric-distributed random variables[J]. MethodsX. 2021;8:101507.

[14] Khozyainova AA, Valyaeva AA, Arbatsky MS, et al. Complex Analysis of Single-Cell RNA Sequencing Data[J]. Biochemistry (Mosc). 2023;88(2):231-252.

[15] Aldridge S, Teichmann SA. Single cell transcriptomics comes of age[J]. Nat Commun. 2020; 11(1):4307.

[16] Bacher R. Normalization for Single-Cell RNA-Seq Data Analysis[J]. Methods Mol Biol. 2019; 1935:11-23.

[17] Bod L, Kye YC, Shi J, et al. B-cell-specific checkpoint molecules that regulate anti-tumour immunity [J]. Nature. 2023;619(7969):348-356.

[18] Brendel M, Su C, Bai Z, et al. Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review[J]. Genomics Proteomics Bioinformatics. 2022;20(5):814-835.

[19] Clarke ZA, Andrews TS, Atif J, et al. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods[J]. Nat Protoc. 2021;16(6):2749-2764.

[20] Denyer T, Timmermans MCP. Crafting a blueprint for single-cell RNA sequencing[J]. Trends Plant Sci. 2022;27(1):92-103.

[21] Huang X, Liu S, Wu L, et al. High Throughput Single Cell RNA Sequencing, Bioinformatics Analysis and Applications [J]. Adv Exp Med Biol. 2018;1068:33-43.

[22] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update [J]. Nucleic Acids Res. 2013;41(Database issue):D991-995.

[23] Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data[J]. Cell. 2019; 177(7):1888-1902 e21.

[24] Stuart T, Satija R. Integrative single-cell analysis[J]. Nat Rev Genet. 2019;20(5):257-272.

[25] Saura CA, Deprada A, Capilla-Lopez MD, et al. Revealing cell vulnerability in Alzheimer's disease by single-cell transcriptomics[J]. Semin Cell Dev Biol. 2023;139:73-83.

[26] Piovani L, Marletaz F. Single-cell transcriptomics refuels the exploration of spiralian biology[J]. Brief Funct Genomics. 2023;22(6):517-524.