Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2024, 6(2); doi: 10.25236/FMSR.2024.060201.

Streptococcus Pneumoniae Teichoic Acids

Author(s)

Miao Yao1,2, Yumeng Hu1,2, Jiali Chen1,2, Kaifeng Wu1,2

Corresponding Author:
Kaifeng Wu
Affiliation(s)

1Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, 563000, China

2Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, 563000, China

Abstract

Teichoic acids (TAs) are one of the key virulence factors of S. pneumoniae, as well as one of the key components of the bacterial cell wall. The complexity of TAs structure and biosynthesis stems from its diverse functions and roles, including their involvement in the regulation of bacterial virulence and bacterial division, it also plays a crucial role in bacterial transformation. In this paper, the basic structure and biosynthesis of teichoic acid in S. pneumoniae were described. Meanwhile, the functions of TAs in the pathogenic mechanism of S. pneumoniae, the regulatory factors of biosynthesis, and the effects in vaccines are summarized. Finally, we also provide a perspective for future research. This review may provide a foundation for further studies to provide the pathogenic mechanism of TAs in S. pneumoniae and a theoretical basis for the design of vaccines.

Keywords

Streptococcus pneumoniae; Teichoic acids; biosynthetic; vaccine

Cite This Paper

Miao Yao, Yumeng Hu, Jiali Chen, Kaifeng Wu. Streptococcus Pneumoniae Teichoic Acids. Frontiers in Medical Science Research (2024), Vol. 6, Issue 2: 1-9. https://doi.org/10.25236/FMSR.2024.060201.

References

[1] Laura L Hammitt A O E, Susan C Morpeth, John Ojal, John, Mutuku A, Mturi N, et al. Effect of ten-valent pneumococcal conjugate vaccine on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance study [J]. Lancet, 2019, 393(10186): 2146-2154.

[2] Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections [J]. FEMS Microbiology Reviews, 2021: 17;45(4):fuaa072.

[3] Kim L, McGee L, Tomczyk S, et al. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective [J]. Clin Microbiol Rev, 2016, 29(3): 525-552.

[4] Abdul Rahman N A, Mohd Desa M N, Masri S N, et al. The Molecular Approaches and Challenges of Streptococcus pneumoniae Serotyping for Epidemiological Surveillance in the Vaccine Era [J]. Pol J Microbiol, 2023, 72(2): 103-115.

[5] Heß N, Waldow F, Kohler T P, et al. Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae [J]. Nature Communications, 2017, 8(1): 2093.

[6] Paton J C, Trappetti C. Streptococcus pneumoniae Capsular Polysaccharide [J]. Microbiology Spectrum, 2019, 7(2).

[7] Jim K K, Aprianto R, Koning R, et al. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq [J]. Cell Rep, 2022, 41(12): 111851.

[8] Kadioglu A, Weiser J N, Paton J C, et al. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease [J]. Nat Rev Microbiol, 2008, 6(4): 288-301.

[9] Feldman C, Anderson R. Pneumococcal virulence factors in community-acquired pneumonia [J]. Curr Opin Pulm Med, 2020, 26(3): 222-231.

[10] Liu X, Gallay C, Kjos M, et al. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae [J]. Mol Syst Biol, 2017, 13(5): 931.

[11] Denapaite D, Brückner R, Hakenbeck R, et al. Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes [J]. Microb Drug Resist, 2012, 18(3): 344-358.

[12] Han X, Sun R, Sandalova T, et al. Structural and functional studies of Spr1654: an essential aminotransferase in teichoic acid biosynthesis in Streptococcus pneumoniae [J]. Open Biol, 2018, 8(4): 170248.

[13] Seo H S, Cartee R T, Pritchard D G, et al. A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model [J]. J Bacteriol, 2008, 190(7): 2379-2387.

[14] Aanensen D M, Mavroidi A, Bentley S D, et al. Predicted functions and linkage specificities of the products of the Streptococcus pneumoniae capsular biosynthetic loci [J]. J Bacteriol, 2007, 189(21): 7856-7876.

[15] Baur S, Marles-Wright J, Buckenmaier S, et al. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae [J]. J Bacteriol, 2009, 191(4): 1200-1210.

[16] Jing-Ren Zhang, I Idanpaan-Heikkila, Werner Fischer and Elaine I. Tuomanen, et al. Pneumococcal licD2 gene is involved in phosphorylcholine metabolism [J]. Mol Microbiol, 1999, 31(5).

[17] Waldow F, Kohler T P, Hess N, et al. Attachment of phosphorylcholine residues to pneumococcal teichoic acids and modification of substitution patterns by the phosphorylcholine esterase [J]. Journal of Biological Chemistry, 2018, 293(27): 10620-10629.

[18] Rosenow C, Ryan P, Weiser J N, et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae [J]. Mol Microbiol, 1997, 25(5): 819-829.

[19] Joyce L R, Guan Z, Palmer K L. Phosphatidylcholine Biosynthesis in Mitis Group Streptococci via Host Metabolite Scavenging [J]. J Bacteriol, 2019, 201(22): e00495-19.

[20] Pérez-Dorado I, Galan-Bartual S, Hermoso J A. Pneumococcal surface proteins: when the whole is greater than the sum of its parts [J]. Mol Oral Microbiol, 2012, 27(4): 221-245.

[21] Roig-Molina E, Sánchez-Angulo M, Seele J, et al. Searching for Antipneumococcal Targets: Choline-Binding Modules as Phagocytosis Enhancers [J]. ACS Infect Dis, 2020, 6(5): 954-974.

[22] S M-C, C F, R M, et al. Molecular basis of the final step of cell division in Streptococcus pneumoniae [J]. 2023, 42(7): 112756.

[23] Araujo A P, Oliveira M L S, Miyaji E N. Negligible role for pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC) in the nasopharyngeal colonization of mice with a serotype 6B pneumococcal strain [J]. Microbial Pathogenesis, 2023, 185: 106391.

[24] Park S-S, Gonzalez-Juarbe N, Martínez E, et al. Streptococcus pneumoniae Binds to Host Lactate Dehydrogenase via PspA and PspC To Enhance Virulence [J]. mBio, 2021, 12(3): : e00673-21.

[25] Wu K, Huang J, Zhang Y, et al. A novel protein, RafX, is important for common cell wall polysaccharide biosynthesis in Streptococcus pneumoniae: implications for bacterial virulence [J]. J Bacteriol, 2014, 196(18): 3324-3334.

[26] Ye W, Zhang J, Shu Z, et al. Pneumococcal LytR Protein Is Required for the Surface Attachment of Both Capsular Polysaccharide and Teichoic Acids: Essential for Pneumococcal Virulence [J]. Frontiers In Microbiology, 2018, 9: 1199.

[27] Vilhena C, Du S, Battista M, et al. The choline-binding proteins PspA, PspC, and LytA of Streptococcus pneumoniae and their interaction with human endothelial and red blood cells [J]. Infection and Immunity, 2023, 91(9): e0015423.

[28] Frolet C, Beniazza M, Roux L, et al. New adhesin functions of surface-exposed pneumococcal proteins [J]. BMC Microbiol, 2010, 10: 190.

[29] Eldholm V, Johnsborg O, Haugen K, et al. Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC [J]. Microbiology (Reading, England), 2009, 155(Pt 7): 2223-2234.

[30] Martner A, Skovbjerg S, Paton J C, et al. Streptococcus pneumoniae autolysis prevents phagocytosis and production of phagocyte-activating cytokines [J]. Infection and Immunity, 2009, 77(9): 3826-3837.

[31] Sutcliffe C G, Shet A, Varghese R, et al. Nasopharyngeal carriage of Streptococcus pneumoniae serotypes among children in India prior to the introduction of pneumococcal conjugate vaccines: a cross-sectional study [J]. BMC Infect Dis, 2019, 19(1): 605.

[32] Waldemar Vollmer O M, Alexander Tomasz, et al. The Cell Wall of Streptococcus pneumoniae [J]. Microbiol Spectr2019 May:7(3).

[33] Jeffrey N Weiser D M F, James C Paton, et al. Streptococcus pneumoniae: transmission, colonization and invasion [J]. Nat Rev Microbiol, 2018, 16(6): 355-367.

[34] Zhang J, Ye W, Wu K, et al. Inactivation of Transcriptional Regulator FabT Influences Colony Phase Variation of Streptococcus pneumoniae [J]. mBio, 2021, 12(4): e0130421.

[35] Weiser J N, Austrian R, Sreenivasan P K, et al. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization [J]. Infection and Immunity, 1994, 62(6): 2582-2589.

[36] Kim J O, Weiser J N. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae [J]. J Infect Dis, 1998, 177(2): 368-377.

[37] Kim J O, Romero-Steiner S, Sørensen U B, et al. Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae [J]. Infection and Immunity, 1999, 67(5): 2327-2333.

[38] Domenech M, García E, Moscoso M. Biofilm formation in Streptococcus pneumoniae [J]. Microb Biotechnol, 2012, 5(4): 455-465.

[39] Marks L R, Reddinger R M, Hakansson A P. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae [J]. mBio, 2012, 3(5): e00200-12.

[40] Domenech M, Ruiz S, Moscoso M, et al. In vitro biofilm development of Streptococcus pneumoniae and formation of choline-binding protein-DNA complexes [J]. Environ Microbiol Rep, 2015, 7(5): 715-727.

[41] Moscoso M, García E, López R. Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion [J]. J Bacteriol, 2006, 188(22): 7785-7795.

[42] Ji H, Zhou Y, Zhang L, et al. Function analysis of choline binding domains (CBDs) of LytA, LytC and CbpD in biofilm formation of Streptococcus pneumoniae [J]. Microbial Pathogenesis, 2023, 174: 105939.

[43] Sharapova Y, Švedas V, Suplatov D. Catalytic and lectin domains in neuraminidase A from Streptococcus pneumoniae are capable of an intermolecular assembly: Implications for biofilm formation [J]. FEBS J, 2021, 288(10): 3217-3230.

[44] Trappetti C, Ogunniyi A D, Oggioni M R, et al. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease [J]. PloS One, 2011, 6(5): e19844.

[45] Hakenbeck R, Madhour A, Denapaite D, et al. Versatility of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci [J]. FEMS Microbiology Reviews, 2009, 33(3): 572-586.

[46] Prince A, Minhas V, Domenech A, et al. Competence remodels the pneumococcal cell wall exposing key surface virulence factors that mediate increased host adherence [J]. PLOS Biology, 2023, 21(1): :e3001990.

[47] Johnston C, Hauser C, Hermans P W M, et al. Fine-tuning of choline metabolism is important for pneumococcal colonization [J]. Mol Microbiol, 2016, 100(6): 972-988.

[48] Chao Y, Marks L R, Pettigrew M M, et al. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease [J]. Front Cell Infect Microbiol, 2014, 4: 194.

[49] Zhang J R, Mostov K E, Lamm M E, et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells [J]. Cell, 2000, 102(6): 827-837.

[50] Cundell D R, Gerard N P, Gerard C, et al. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor [J]. Nature, 1995, 377(6548): 435-438.

[51] Radin J N, Orihuela C J, Murti G, et al. beta-Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae [J]. Infection and Immunity, 2005, 73(12): 7827-7835.

[52] K W, J H, Y Z, et al. A novel protein, RafX, is important for common cell wall polysaccharide biosynthesis in Streptococcus pneumoniae: implications for bacterial virulence [J]. 2014, 196(18): 3324-3334.

[53] Ochs M M, Bartlett W, Briles D E, et al. Vaccine-induced human antibodies to PspA augment complement C3 deposition on Streptococcus pneumoniae [J]. Microbial Pathogenesis, 2008, 44(3): 204-214.

[54] Quin L R, Moore Q C, Thornton J A, et al. Peritoneal challenge modulates expression of pneumococcal surface protein C during bacteremia in mice [J]. Infection and Immunity, 2008, 76(3): 1122-1127.

[55] Ramos-Sevillano E, Urzainqui A, Campuzano S, et al. Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response [J]. Infection and Immunity, 2015, 83(2): 591-603.

[56] Ramos-Sevillano E, Moscoso M, García P, et al. Nasopharyngeal colonization and invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae [J]. PloS One, 2011, 6(8): e23626.

[57] Hoogendijk A J, Roelofs J J T H, Duitman J, et al. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae [J]. Mol Med, 2012, 18(1): 1086-1095.

[58] Li Y, Metcalf B J, Chochua S, et al. Genome-wide association analyses of invasive pneumococcal isolates identify a missense bacterial mutation associated with meningitis [J]. Nature Communications, 2019, 10(1): 178.

[59] Yau B, Hunt N H, Mitchell A J, et al. Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis [J]. Int J Mol Sci, 2018, 19(11): 3555.

[60] Schneider O, Michel U, Zysk G, et al. Clinical outcome in pneumococcal meningitis correlates with CSF lipoteichoic acid concentrations [J]. Neurology, 1999, 53(7): 1584-1587.

[61] Rajagopal M, Walker S. Envelope Structures of Gram-Positive Bacteria [J]. Curr Top Microbiol Immunol, 2017, 404: 1-44.

[62] Kang S-S, Sim J-R, Yun C-H, et al. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2 [J]. Arch Pharm Res, 2016, 39(11): 1519-1529.

[63] Zafar M A, Hammond A J, Hamaguchi S, et al. Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the dlt Locus Promotes Inflammation and Transmission [J]. mBio, 2019, 10(3): e01032-19.

[64] Reyes-Caballero H, Guerra A J, Jacobsen F E, et al. The metallo regulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor [J]. J Mol Biol, 2010, 403(2): 197-216.

[65] Ye W, Zhang J, Shu Z, et al. Pneumococcal LytR Protein Is Required for the Surface Attachment of Both Capsular Polysaccharide and Teichoic Acids: Essential for Pneumococcal Virulence [J]. Frontiers in Microbiology, 2018, 9: :1199.

[66] Chatfield C H, Koo H, Quivey R G. The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated [J]. Microbiology (Reading, England), 2005, 151(Pt 2): 625-631.

[67] N H, F W, TP K, et al. Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae [J]. 2017, 8(1): 2093.

[68] Draing C, Pfitzenmaier M, Zummo S, et al. Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae [J]. The Journal of Biological Chemistry, 2006, 281(45): 33849-33859.

[69] Thanassi J A, Hartman-Neumann S L, Dougherty T J, et al. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae [J]. Nucleic Acids Res, 2002, 30(14): 3152-3162.

[70] Xiao S, Suo W, Zhang J, et al. MgaSpn is a negative regulator of capsule and phosphorylcholine biosynthesis and influences the virulence of Streptococcus pneumoniae D39 [J]. Virulence, 2021, 12(1): 2366-2381.

[71] Johnston C, Hauser C, Hermans P W M, et al. Fine‐tuning of choline metabolism is important for pneumococcal colonization [J]. Mol Microbiol, 2016, 100(6): 972-988.

[72] He L-Y, Le Y-J, Guo Z, et al. The Role and Regulatory Network of the CiaRH Two-Component System in Streptococcal Species [J]. Frontiers In Microbiology, 2021, 12: 693858.

[73] Varela P F, Velours C, Aumont-Niçaise M, et al. Biophysical and structural characterization of a zinc-responsive repressor of the MarR superfamily [J]. PloS One, 2019, 14(2): e0210123.

[74] Guerra A J, Dann C E, Giedroc D P. Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state [J]. J Am Chem Soc, 2011, 133(49): 19614-19617.

[75] Zhang J, Ye W, Wu K, et al. Inactivation of Transcriptional Regulator FabT Influences Colony Phase Variation of Streptococcus pneumoniae [J]. mBio, 2021, 12(4): e0130421.

[76] Engholm D H, Kilian M, Goodsell D S, et al. A visual review of the human pathogen Streptococcus pneumoniae [J]. FEMS Microbiology Reviews, 2017, 41(6): 854-879.

[77] Alreja A B, Linden S B, Lee H R, et al. Understanding the Molecular Basis for Homodimer Formation of the Pneumococcal Endolysin Cpl-1 [J]. ACS Infect Dis, 2023, 9(5): 1092-1104.

[78] Suo W, Guo X, Zhang X, et al. Glucose levels affect MgaSpn regulation on the virulence and adaptability of Streptococcus pneumoniae [J]. Microbial Pathogenesis, 2023, 174: 105896.

[79] Sasková L, Nováková L, Basler M, et al. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae [J]. J Bacteriol, 2007, 189(11): 4168-4179.

[80] Cortes P R, Piñas G E, Cian M B, et al. Stress-triggered signaling affecting survival or suicide of Streptococcus pneumoniae [J]. Int J Med Microbiol, 2015, 305(1): 157-169.

[81] Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines [J]. FEMS Microbiology Reviews, 2018, 42(3): 388-423.

[82] Theilacker C, Kaczynski Z, Kropec A, et al. Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid [J]. Infection and Immunity, 2006, 74(10): 5703-5712.

[83] Chen Q, Dintaman J, Lees A, et al. Novel synthetic (poly)glycerol phosphate-based antista phylococcal conjugate vaccine [J]. Infection and Immunity, 2013, 81(7): 2554-2261.

[84] Gang T B, Hammond D J, Singh S K, et al. The phosphocholine-binding pocket on C-reactive protein is necessary for initial protection of mice against pneumococcal infection [J]. The Journal of Biological Chemistry, 2012, 287(51): 43116-43125.

[85] Dorosti H, Nezafat N, Heidari R, et al. Production and Immunological Evaluation of Epitope-based Preventative Pneumococcal Candidate Vaccine Comprising Immunodominant Epitopes from PspA, CbpA, PhtD and PiuA Antigens [J]. Curr Pharm Biotechnol, 2021, 22(14): 1900-1109.

[86] Mann B, Thornton J, Heath R, et al. Broadly protective protein-based pneumococcal vaccine composed of pneumolysin toxoid-CbpA peptide recombinant fusion protein [J]. J Infect Dis, 2014, 209(7): 1116-1125.