Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2024, 5(1); doi: 10.25236/AJMC.2024.050105.

Organic cation dependent hot carrier relaxation dynamics in two-dimensional perovskites


Haoran Pang

Corresponding Author:
Haoran Pang

School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China


Hot carrier solar cells (HCSC) have attracted extensive attention due to the efficient utilization of high-energy photons. Two-dimensional (2D) perovskites is one of the materials suitable as HCSC due to the hot phonon bottleneck effect as well as the quantum well structure. Providing methods to regulate the hot carrier cooling rate of 2D perovskites is crucial for further technological development. In this study, we systematically investigate the role of organic molecules in regulating hot carrier relaxation in 2D n = 1 perovskites through time-resolved spectroscopic measurements. The results of transient absorption and time-resolved photoluminescence reveal that hot carrier relaxation in 2D perovskites takes place on sub-picosecond time scales and can be effectively modulated by component engineering of organic molecules. These insightful results contribute to deep understanding of the hot carrier relaxation process of 2D perovskites and provide valuable information for the future development of higher performance perovskite solar cells.


2D perovskite; time-resolved spectra; hot carrier relaxation; component engineering

Cite This Paper

Haoran Pang. Organic cation dependent hot carrier relaxation dynamics in two-dimensional perovskites. Academic Journal of Materials & Chemistry (2024) Vol. 5, Issue 1: 25-30. https://doi.org/10.25236/AJMC.2024.050105.


[1] Filip, M.R.; Eperon, G.E.; Snaith, H.J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat Commun 2014, 5, 5757, doi:10.1038/ncomms6757.

[2] Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7, doi:10.1039/c3ee43822h.

[3] Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Gratzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347, doi:10.1126/science.1243167.

[4] Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344, doi:10.1126/science.1243982.

[5] Ma, L.; Hao, F.; Stoumpos, C.C.; Phelan, B.T.; Wasielewski, M.R.; Kanatzidis, M.G. Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH(3)NH(3)SnI(3) Films. J Am Chem Soc 2016, 138, 14750-14755, doi:10.1021/jacs.6b09257.

[6] Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519-522, doi:10.1126/science. aaa2725.

[7] Guo, D.; Ma, L.; Zhou, Z.; Lin, D.; Wang, C.; Zhao, X.; Zhang, F.; Zhang, J.; Nie, Z. Charge transfer dynamics in a singlet fission organic molecule and organometal perovskite bilayer structure. Journal of Materials Chemistry A 2020, 8, 5572-5579, doi:10.1039/c9ta11022d.

[8] Lin, D.; Ma, L.; Ni, W.; Wang, C.; Zhang, F.; Dong, H.; Gurzadyan, G.G.; Nie, Z. Unveiling hot carrier relaxation and carrier transport mechanisms in quasi-two-dimensional layered perovskites. Journal of Materials Chemistry A 2020, 8, 25402-25410, doi:10.1039/d0ta09530c.

[9] Li, X.; Hoffman, J.M.; Kanatzidis, M.G. The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chem Rev 2021, 121, 2230-2291, doi:10.1021/acs.chemrev.0c01006.

[10] Sirbu, D.; Balogun, F.H.; Milot, R.L.; Docampo, P. Layered Perovskites in Solar Cells: Structure, Optoelectronic Properties, and Device Design. Advanced Energy Materials 2021, 11, doi:10.1002/aenm. 202003877.

[11] Zhang, F.; Lu, H.; Tong, J.; Berry, J.J.; Beard, M.C.; Zhu, K. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy & Environmental Science 2020, 13, 1154-1186, doi:10. 1039/c9ee03757h.

[12] Chen, J.; Lee, D.; Park, N.-G. Stabilizing the Ag Electrode and Reducing J–V Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9, 36338-36349, doi:10.1021/acsami.7b07595.

[13] Yang, S.; Chen, S.; Mosconi, E.; Fang, Y.; Xiao, X.; Wang, C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao, Y.; et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 2019, 365, 473-478, doi:10.1126/science.aax3294.

[14] Zhang, Y.; Liu, Y.; Xu, Z.; Yang, Z.; Liu, S. 2D Perovskite Single Crystals with Suppressed Ion Migration for High‐Performance Planar‐Type Photodetectors. Small 2020, 16, doi:10.1002/smll. 202003145.

[15] Wu, G.; Yang, T.; Li, X.; Ahmad, N.; Zhang, X.; Yue, S.; Zhou, J.; Li, Y.; Wang, H.; Shi, X.; et al. Molecular Engineering for Two-Dimensional Perovskites with Photovoltaic Efficiency Exceeding 18%. Matter 2021, 4, 582-599, doi:10.1016/j.matt.2020.11.011.

[16] Zhang, Y.; Park, N.-G. Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters 2022, 7, 757-765, doi:10.1021/acsenergylett.1c02645.

[17] Lin, W.; Canton, S.E.; Zheng, K.; Pullerits, T. Carrier Cooling in Lead Halide Perovskites: A Perspective on Hot Carrier Solar Cells. ACS Energy Letters 2023, 9, 298-307, doi:10.1021/acsenergylett. 3c02359.

[18] Lim, J.W.M.; Giovanni, D.; Righetto, M.; Feng, M.; Mhaisalkar, S.G.; Mathews, N.; Sum, T.C. Hot Carriers in Halide Perovskites: How Hot Truly? The Journal of Physical Chemistry Letters 2020, 11, 2743-2750, doi:10.1021/acs.jpclett.0c00504.

[19] Li, M.; Fu, J.; Xu, Q.; Sum, T.C. Slow Hot‐Carrier Cooling in Halide Perovskites: Prospects for Hot‐Carrier Solar Cells. Advanced Materials 2019, 31, doi:10.1002/adma.201802486.

[20] König, D.; Casalenuovo, K.; Takeda, Y.; Conibeer, G.; Guillemoles, J.F.; Patterson, R.; Huang, L.M.; Green, M.A. Hot carrier solar cells: Principles, materials and design. Physica E: Low-dimensional Systems and Nanostructures 2010, 42, 2862-2866, doi:10.1016/j.physe.2009.12.032.

[21] Wang, G.; Liao, L.P.; Elseman, A.M.; Yao, Y.Q.; Lin, C.Y.; Hu, W.; Liu, D.B.; Xu, C.Y.; Zhou, G.D.; Li, P.; et al. An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite. Nano Energy 2020, 68, doi:10.1016/j.nanoen.2019.104383.

[22] O’Keeffe, P.; Catone, D.; Paladini, A.; Toschi, F.; Turchini, S.; Avaldi, L.; Martelli, F.; Agresti, A.; Pescetelli, S.; Del Rio Castillo, A.E.; et al. Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters 2019, 19, 684-691, doi:10.1021/acs.nanolett.8b03685.

[23] Jia, X.; Jiang, J.; Zhang, Y.; Qiu, J.; Wang, S.; Chen, Z.; Yuan, N.; Ding, J. Observation of enhanced hot phonon bottleneck effect in 2D perovskites. Applied Physics Letters 2018, 112, doi:10.1063/1. 5021679.

[24] El-Ballouli, A.a.O.; Bakr, O.M.; Mohammed, O.F. Structurally Tunable Two-Dimensional Layered Perovskites: From Confinement and Enhanced Charge Transport to Prolonged Hot Carrier Cooling Dynamics. The Journal of Physical Chemistry Letters 2020, 11, 5705-5718, doi:10.1021/acs.jpclett. 0c00359.

[25] Maity, P.; Yin, J.; Cheng, B.; He, J.-H.; Bakr, O.M.; Mohammed, O.F. Layer-Dependent Coherent Acoustic Phonons in Two-Dimensional Ruddlesden–Popper Perovskite Crystals. The Journal of Physical Chemistry Letters 2019, 10, 5259-5264, doi:10.1021/acs.jpclett.9b02100.

[26] Yang, Y.; Ostrowski, D.P.; France, R.M.; Zhu, K.; van de Lagemaat, J.; Luther, J.M.; Beard, M.C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics 2015, 10, 53-59, doi:10.1038/nphoton.2015.213.

[27] Madjet, M.E.; Berdiyorov, G.R.; El-Mellouhi, F.; Alharbi, F.H.; Akimov, A.V.; Kais, S. Cation Effect on Hot Carrier Cooling in Halide Perovskite Materials. The Journal of Physical Chemistry Letters 2017, 8, 4439-4445, doi:10.1021/acs.jpclett.7b01732.

[28] Chen, J.; Messing, M.E.; Zheng, K.; Pullerits, T. Cation-Dependent Hot Carrier Cooling in Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2019, 141, 3532-3540, doi:10.1021/jacs.8b11867.

[29] Yang, J.; Wen, X.; Xia, H.; Sheng, R.; Ma, Q.; Kim, J.; Tapping, P.; Harada, T.; Kee, T.W.; Huang, F.; et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nature Communications 2017, 8, doi:10.1038/ncomms14120.

[30] Yin, J.; Maity, P.; Naphade, R.; Cheng, B.; He, J.H.; Bakr, O.M.; Bredas, J.L.; Mohammed, O.F. Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals. ACS Nano 2019, 13, 12621-12629, doi:10.1021/acsnano.9b04085.

[31] Yin, J.; Naphade, R.; Maity, P.; Gutierrez-Arzaluz, L.; Almalawi, D.; Roqan, I.S.; Bredas, J.L.; Bakr, O.M.; Mohammed, O.F. Manipulation of hot carrier cooling dynamics in two-dimensional Dion-Jacobson hybrid perovskites via Rashba band splitting. Nat Commun 2021, 12, 3995, doi:10.1038/ s41467-021-24258-7.

[32] Lin, D.; Ni, W.; Gurzadyan, G.G.; Zhang, F.; Zhao, W.; Ma, L.; Nie, Z. Trap-free exciton dynamics in monolayer WS(2)via oleic acid passivation. Nanoscale 2021, 13, 20126-20133, doi:10.1039/ d1nr 05590a.