Academic Journal of Engineering and Technology Science, 2024, 7(2); doi: 10.25236/AJETS.2024.070219.
Bo Niu
School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China
This paper reports a detailed modelling, parameter effect and developmental experimental investigation of a piezoelectric wind energy harvester with interaction between vortex-induced vibration and galloping for the low speed air flows. The influence factors such as mechanical damping, mass, and the cross section dimension on the interaction are explored in turn. Guidance based on the above discussion, a prototype is fabricated and measured successfully. The experimental results agreed well with the theoretical predictions. The proposed model is an effective tool to develop the interactive piezoelectric wind energy harvester working in low wind speed regions.
Energy harvesting, Modelling, Vortex-induced vibration, Galloping, Piezoelectricity
Bo Niu. A Piezoelectric Wind Energy Harvester for Low Speed Air-flows. Academic Journal of Engineering and Technology Science (2024) Vol. 7, Issue 2: 130-137. https://doi.org/10.25236/AJETS.2024.070219.
[1] A. Erturk, W. G. Vieira, C. De Marqui and D. J. Inman. On the energy harvesting potential of piezoaeroelastic system[J]. Applied Physics Letters. 2010, 96: 184103.
[2] X. F. He, Z. G. Shang and S. L. Jiang. Discrepancy between galloping theory and experiment on a MEMS piezoelectric wind energy harvester[C]. The 19th International Conference on Solid-State Sensors, Actuators and Microsystems, Kaohsiung, Taiwan, 2017.
[3] A. Bibo, M. F. Daqaq. On the optimal performance and universal design curves of galloping energy harvesters[J]. Applied Physics Letters, 2014, 104: 023901.
[4] R. Naseer, H. L. Dai, A. Abdelkefi and L. Wang. Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics[J]. Applied Energy, 2017, 203: 142-53.
[5] H. L. Dai, A. Abdelkefi, Y. Yang and L. Wang. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations[J]. Applied Physics Letters, 2016, 108: 053902.
[6] G. Hu, K. T. Tse, M. Wei, R. Naseer, A. Abdelkefi and K. C. S. Kwok. Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments[J]. Applied energy, 2018, 226: 682-689.
[7] Y. W. Yang, L. Y. Zhao and L. H. Tang. Comparative study of tip cross-sections for efficient galloping energy harvesting[J]. Applied Physics Letters, 2013, 102(6): 064105.
[8] J. D. Smith. An experimental study of the aeroelastic instability of rectangular cylinders[D]. Ph.D. Dissertation, UBC, Vancouver, Canada; 1962.
[9] Y. Tamura and G. Matsui. Wake-oscillator model of vortex-induced oscillation of circular cylinder[C]. The 5st International Conference on Wind Engineering, Fort Collins, Colorado, USA, 1979.
[10] Y. Tamura and K. Shimada. A mathematical model for the transverse oscillations of square cylinders[C]. The 1st International Conference on Flow Induced Vibrations, Bowness on Windermere, England, 1987.
[11] C. Mannini, A. M. Marra, T. Massai and G. Bartoli. Interference of vortex-induced vibration and transverse galloping for a rectangular cylinder[J]. Journal of Fluids Structures, 2016, 66: 403-23.
[12] H. W. Niu, S. Zhou, Z. Q. Chen and X. G. Hua. An empirical model for amplitude prediction on VIV-galloping instability of rectangular cylinders[J]. Wind and Structures, 2015:21(1), 85-103.
[13] C. Mannini, T. Massai and A. M. Marra. Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism[J]. Journal of Sound Vibration, 2018, 419: 493-509.
[14] M. L. Facchinetti, E. D. Langre and F. Biolley. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19: 123-40.
[15] A. Laneville. Effects of turbulence on wind induced vibrations of bluff cylinders[D]. Ph.D. Dissertation, UBC, Vancouver, Canada; 1973.
[16] A. Barrero-Gil. A. Sanz-Andrés and G. Alonso. Hysteresis in transverse galloping: the role of the inflection points[J]. Journal of Fluids and Structures, 2009, 25: 1007-20.