Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2024, 5(1); doi: 10.25236/AJMC.2024.050110.

Effect of Interface Modification on the Performances of TiO2-based Perovskite Solar Cells

Author(s)

Wenmei Gu, Tianwei Li, Rui Zha, Jincheng Zhou

Corresponding Author:
Wenmei Gu
Affiliation(s)

School of Material Science and Engineering, Shenyang Architecture University, Shenyang, 110168, China

Abstract

TiO2 was used as the basis of Electron Transport Layers (ETLs), and the interface modification of ETLs was carried out using sixteen alkyl three methyl bromide (C16H33(CH3)3NBr,CTAB), which plays the roles of filling pores and passivating surface defects. The effects of the doping concentration of 0.005 mol/L, 0.010mol/L, and 0.015mol/L CTAB solution on the device efficiency were investigated separately, and the mechanism of the effects of different concentrations was explored. The surface morphology and the photoelectric properties of the samples were systematically investigated by SEM, EIS, J-V, and transmittance tests.

Keywords

perovskite solar cell; electron transport layer; CTAB; interface modification

Cite This Paper

Wenmei Gu, Tianwei Li, Rui Zha, Jincheng Zhou. Effect of Interface Modification on the Performances of TiO2-based Perovskite Solar Cells. Academic Journal of Materials & Chemistry (2024) Vol. 5, Issue 1: 55-61. https://doi.org/10.25236/AJMC.2024.050110.

References

[1] Katherine J S,Martin E B,Richard E F,et al.N2O flux from plantsystems in polar deserts switch between sources and sinks underdifferent light condition[J]. Soil Biology and Biochemisry, 2012,(48) : 69-77.

[2] Li Mengli, Yang Xiaolong, Tang Liping, et al. Catalytic decomposition of N2O[J]. Advances in Chemistry, 2012, 9: 1801-1817.

[3] Montzka S A, Dlugokencky E J,Butler J H. Non-CO2 greenhousegases and climate change[J]. Nature, 2011, 476(7358): 43-50.

[4] Yi C, Luo J, Meloni S, et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells [J]. Energy & Environmental Science, 2016, 9(2):656-662.

[5] Hao Huang, Peng Cui,Yan Chen et al.24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition[J].Joule, 2022,6(4),2186-2202.

[6] H. Zhang, J. Shi, X.Xu, L. Zhu, Y. Luo, D, Li, Q. Meng. Mg-doped TiO, boosts theeficiency of planar perovskite solar cells to exceed 19% [J]. Journal of MaterialsChemistryA.2016,4:15383-15389.

[7] L. Zuo, Z. Gu, T. Ye, W. Fu, G, Wu, H. Li, H. Chen. Enhanced photovoltaic performance of CHNHPbl; perovskitesolarcells through interfacial engineeringusingself-assembling monolayer [J]. Journal of the American Chemical Society. 2015, 137:2674-2679.

[8] Wang C, Zhao D, Grice C R, et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells [J]. Journal of Materials Chemistry A, 2016, 4(31): 12080-12087.

[9] Chen J, Zhao X, Kim S G, et al. Multifunctional  chemical linker imidazoleacetic acid hydrochloride for  21% efficient and stable planar perovskite solar cells [J]. Advanced Materials, 2019, 31(39): 1902902.

[10] Dixit S G, Mahadeshwar A R, Haram S K. Some aspects of the role of surfactants in the formation of nanoparticles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 133(1): 69-75.

[11] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell [J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433-1435. 

[12] Smith D D, Reich G, Baldrias M, et al. Silicon solar cells with total area efficiency above 25 % [C]; proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), F 5-10 June 2016.

[13] Tran V H, Ambade R B, Ambade S B, et al. Low-temperature solution-processed SnO2 nanoparticles as cathode buffer layer for inverted organic solar cells [J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1645-1653. 

[14] Ren X, Yang D, Yang Z, et al. Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2421-2429. 

[15] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells [J]. Nature Energy, 2018, 3: 682-689.

[16] Wang Yanxiang, Gao Peiyang, Fan Xueyun,etc.Effect of Interface Modification on the Performances of  SnO2-based Perovskite Solar Cells[J].Journal of Ceramics.2020,41(4):500-506.