Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2024, 6(5); doi: 10.25236/FMSR.2024.060509.

Advances in Studies of Ceftazidime-Avibactam Application and Resistance Mechanism Research

Author(s)

Hongling Lu

Corresponding Author:
Hongling Lu
Affiliation(s)

Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China

Abstract

Ceftazidime-Avibactam (CAZ-AVI) is a novel β-lactamase/β-lactamase inhibitor combination. Since put into the market, CAZ-AVI has shown high bactericidal activity when treating patients with Carbapenem-Resistant Enterobacteriaceae (CRE) infections with bacteremia, pneumonia caused by Carbapenem-Resistant Klebsiella pneumoniae (CRKP), or post-transplantation infections. However, with the widespread use of CAZ-AVI, there are more and more reports of resistance to the compound by Gram-negative bacteria isolated from clinical samples. The main mechanism of resistance to CAZ-AVI was found to be mutations in the amino acid sequences of β-lactamase, such as KPC, AmpC, and OXA-48 enzyme, and there were also a small number of reports of resistance due to altered permeability of the bacterial outer membrane, mutations in penicillin-binding proteins (PBPs), and overexpression of efflux pumps. This paper focuses on the review of the resistance mechanisms present in various types of bacteria to CAZ-AVI.

Keywords

Ceftazidime-Avibactam; β-lactamase inhibitor; mechanism resistance

Cite This Paper

Hongling Lu. Advances in Studies of Ceftazidime-Avibactam Application and Resistance Mechanism Research. Frontiers in Medical Science Research (2024), Vol. 6, Issue 5: 60-68. https://doi.org/10.25236/FMSR.2024.060509.

References

[1] Karakonstantis S, Kritsotakis E, Gikeas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options [J]. Antimicrob Chemother, 2020, 75(2):271-282.

[2] Ghafourian S, Sadeghifard N, Soheili S, et al. Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology [J]. Curr Issues Mol Biol, 2015, 17:11-21. 

[3] Clarke A, Zemcov S. Ro 13-9904 and GR 20263, two new cephalosporins with broad-spectrum activity: an in vitro comparison with other beta-lactam antibiotics [J]. Antimicrob Chemother, 1981, 7(5):515-520.

[4] Abodakpi H, Chang KT, Zhou J, et al. A novel framework to compare the effectiveness of β-lactamase inhibitors against extended-spectrum β-lactamase-producing Enterobacteriaceae [J]. Clin Microbiol Infect, 2019, 25(9):1154.

[5] Yahav D, Giske CG, Grāmatniece A, et al. New β-Lactam-β-Lactamase Inhibitor Combinations [J]. Clin Microbio Rev, 2020, 34(1):e00115-20. 

[6] Krisztina M, Scott A, Elise T, et al. Overcoming an Extremely Drug Resistant (XDR) Pathogen: avibactam restores susceptibility to ceftazidime for Burkholderia cepacia complex isolates from Cystic Fibrosis Patients [J]. ACS Infect Dis, 2017, 3(7):502-511.

[7] Ryan K, M Hong N, Liang C, et al. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections[J]. Antimicrob Agents Chemother, 2018, 62(5):e02497-17. 

[8] James A, Krystyna M, Samuel K, et al. In vitro activity of ceftazidime-avibactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in Asia-Pacific Countries: results from the INFORM global surveillance program, 2012 to 2015 [J]. Antimicrob Agents Chemother, 2018, 62(7):e02569-17.

[9] Fei Zhang, Jinbiao Zhong, Handong Ding, et al. Efficacy of ceftazidime-avibactam in the treatment of carbapenem-resistant Klebsiella pneumonia infection after kidney transplantation [J]. Infect Drug Resist, 2021, 14: 5165-5174. 

[10] Davibactamd v, Judith J, Sandra S, et al. Colistin Versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae [J]. Clin Infect Dis,2018, 66(2):163-171.

[11] Endimiani A, Hujer KM, Hujer AM, et al. Evaluation of ceftazidime and NXL104 in two murine models of infection due to KPC-producing Klebsiella pneumoniae [J]. Antimicrob Agents Chemother, 2011, 55(1):82-5.

[12] Borgonovi M, Miossec C, Lowther J. The efficacy of ceftazidime combined with NXL104, a novel β-lactamase inhibitor, in a mouse model of kidney infections induced by β-lactamase producing Enterobacteriaceae [J]. Clinical Microbiology and Infectious Diseases, 2007, 12(1):17-22.

[13] Cottagnoud P, Merdjan H, Acosta F, et al. Pharmacokinetics of the new β-lactamase inhibitor NXL104 in an experimental rabbit meningitis model: restoration of the bacteriological efficacy of ceftazidime (CAZ) against a class C producing K. pneumoniae [J]. Antimicrobial Agents and Chemotherapy, 2007,10(1):17-20.

[14] Crandon JL, Schuck VJ, Banevicius MA, et al. Comparative in vitro and in vivo efficacies of human simulated doses of ceftazidime and ceftazidime-avibactam against Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother, 2012, 56: 6137–6146.

[15] Lucasti C, Popescu I, Ramesh MK, et al. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adult [J]. Antimicrob Chemother, 2013, 68(5):1183-92.

[16] Vazquez JA, González Pa, Stricklin D, et al. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults [J]. Curr Med Res Opin, 2012, 28: 1921–1931.

[17] Senchyna F, Gaur R, Sandlund J, et al. Diversity of resistance mechanisms in carbapenem-resistant Enterobacteriaceae at a health care system in Northern California from 2013 to 2016 [J]. Diagn Microbiol Infect Dis, 2019, 93(3):250-257.

[18] Karlowsky J, Kazmierczak K, Bouchillon S, et al. In vitroactivity of ceftazidime-avibactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in asia-Pacific countries: results from the INFORM global surveillance program, 2012 to 2015 [J]. Antimicrob Agents Chemother, 2018, 62(7):e02569-17. 

[19] Kazmierczak K, Dejonge B, Stone G, et al. In vitro activity of ceftazidime/avibactam against isolates of Enterobacteriaceae collected in European countries: INFORM global surveillance 2012-15 [J]. Antimicrob Chemother, 2018, 73(10):2782-2788.

[20] Hu F, Guo Y, Zhu D, et al. 2020 CHINET China Bacterial Drug Resistance Surveillance [J]. Chinese Journal of Infection and Chemotherapy,2021,21(4):377-387.

[21] Wang Y, Wang J, Wang R, et al. Resistance to ceftazidime-avibactam and underlying mechanisms [J]. Glob Antimicrob Resist,2020,22:18–27.

[22] Levitt PS, Papp-Wallace KM, Taracila MA, et al. Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis [J]. Biol Chem, 2012, 287(38):31783-93.

[23] Shields RK, Chen L, Cheng S, et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections [J]. Antimicrob Agents Chemother, 2017, 61(3):e02097-16. 

[24] Barnes MD, Winkler ML, Taracila MA, et al. Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering [J]. mBio, 2017, 8(5):e00528-17.

[25] Gaibani P, Campoli C, Lewis RE, et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment [J]. Antimicrob Chemother, 2018, 73(6):1525-1529.

[26] Haidar G, Clancy CJ, Shields RK, et al. Mutations in blaKPC-3 That Confer Ceftazidime-Avibactam Resistance Encode Novel KPC-3 Variants That Function as Extended- Spectrum β-Lactamases [J]. Antimicrob Agents Chemother, 2017, 61(5):e02534-16.

[27] Shields RK, Nguyen MH, Press EG, et al. Emergence of Ceftazidime-Avibactam Resistance and Restoration of Carbapenem Susceptibility in Klebsiella pneumoniae Carbapenemase-Producing K pneumoniae: A Case Report and Review of Literature [J]. Open Forum Infect Dis,2017,4(3):ofx101.

[28] Galani I, Antoniadou A, Karaiskos I, et al. Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam [J]. Clin Microbiol Infect, 2019, 25(6):763.e5-763.e8.

[29] Winkler ML, Papp-Wallace KM, Bonomo RA. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop[J]. Antimicrob Chemother,2015,70(8):2279-86.

[30] Nelson K, Hemarajata P, Sun D, et al. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity [J]. Antimicrob Agents Chemother,2017,61(10):e00989-17.

[31] Chen Y, Yang R, Guo P, et al. Dynamic evolution of ceftazidime-avibactam resistance due to interchanges between blaKPC-2 and blaKPC-145 during treatment of Klebsiella pneumoniae infection [J]. Front Cell Infect Microbiol,2023,13:1244511.

[32] Li X, Ke H, Wu W, et al. Molecular Mechanisms Driving the In Vivo Development of KPC-71-Mediated Resistance to Ceftazidime-Avibactam during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections [J]. mSphere,2021,6(6):e0085921. 

[33] Compain F, Dorchène D, Arthur M. Combination of Amino Acid Substitutions Leading to CTX-M-15-Mediated Resistance to the Ceftazidime-Avibactam Combination [J]. Antimicrob Agents Chemother, 2018,62(9):e00357-18.

[34] Both A, Büttner H, Huang J, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate [J]. Antimicrob Chemother,2017,72(9):2483-2488.

[35] Winkler ML, Papp-Wallace KM, Taracila MA, et al. Avibactam and inhibitor-resistant SHV β-lactamases [J]. Antimicrob Agents Chemother,2015,59(7):3700-9.

[36] Lahiri SD, Giacobbe RA, Johnstone MR, et al. Activity of avibactam against Enterobacter cloacae producing an extended-spectrum class C β-lactamase enzyme [J]. Antimicrob Chemother, 2014,69(11): 2942-6.

[37] röhlich C, Sørum V, Thomassen AM, et al. OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs [J]. mSphere,2019,4(2):e00024-19.

[38] Shields RK, Clancy CJ, Hao B, et al. Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum β-lactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae [J]. Antimicrob Agents Chemother, 2015, 59(9):5793-7.

[39] Gaibani P, Bianco G, Amadesi S, et al. Increased blaKPC Copy Number and OmpK35 and OmpK36 Porins Disruption Mediated Resistance to Imipenem/Relebactam and Meropenem/ Vaborbactam in a KPC-Producing Klebsiella pneumoniae Clinical Isolate [J]. Antimicrob Agents Chemother, 2022,66(5):e0019122.

[40] Zhang Y, Kashikar A, Brown CA, et al. Unusual Escherichia coli PBP 3 Insertion Sequence Identified from a Collection of Carbapenem-Resistant Enterobacteriaceae Tested In Vitro with a Combination of Ceftazidime-, Ceftaroline-, or Aztreonam-Avibactam [J]. Antimicrob Agents Chemother, 2017,61(8):e00389-17.

[41] Datta P, Dasgupta A, Singh AK, et al. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria [J]. Mol Microbiol,2006,62(6):1655-73.

[42] Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria [J]. FEMS Microbiol Rev,2012,36(2):340-63.

[43] Pagès JM, Peslier S, Keating TA, et al. Role of the Outer Membrane and Porins in Susceptibility of β-Lactamase-Producing Enterobacteriaceae to Ceftazidime-Avibactam [J]. Antimicrob Agents Chemother, 2015,60(3):1349-59. 

[44] Winkler ML, Papp-Wallace KM, Hujer AM, et al. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother,2015,59(2):1020-1029. 

[45] Chalhoub H, Sáenz Y, Nichols WW, et al. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis [J]. Int J Antimicrob Agents,2018,52(5):697-701.

[46] Wu Y, Battalapalli D, Hakeem MJ, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections [J]. Nanobiotechnology,2021,19(1):401.

[47] Cuevas-Cruz M, Hernández-Guzmán U, Álvarez-Rosales PC, et al. The Role of Mass Spectrometry in the Discovery of Antibiotics and Bacterial Resistance Mechanisms: Proteomics and Metabolomics Approaches [J]. Curr Med Chem,2022,30(1):30-58.

[48] Giddins MJ, Macesic N, Annavajhala MK, et al. Successive Emergence of Ceftazidime-Avibactam Resistance through Distinct Genomic Adaptations in blaKPC-2-Harboring Klebsiella pneumoniae Sequence Type 307 Isolates [J]. Antimicrob Agents Chemother,2018,62(3):e02101-17. 

[49] Shi Q, Yin D, Han R, et al. Emergence and Recovery of Ceftazidime-avibactam Resistance in blaKPC-33-Harboring Klebsiella pneumoniae Sequence Type 11 Isolates in China [J]. Clin Infect Dis, 2020, 71(Suppl4): S436-S439.

[50] Falcone M, Daikos GL, Tiseo G, et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase-Producing Enterobacterales [J]. Clin Infect Dis, 2021, 72(11):1871-1878.