Frontiers in Medical Science Research, 2024, 6(7); doi: 10.25236/FMSR.2024.060702.
Daohuan Yuan1, Jiamin Huang1, Ji Lin1, Jiajia Tian1, Xiaojun Cai1, Rui He2, Yong Xie2
1DR PLANT (Guangdong) Biotechnology Co., LTD, Foshan, Guangdong, 528300, China
2Beijing DR PLANT Biotechnology Co., LTD, Beijing, 100000, China
The soothing and repairing effects of Artemisia annua and Centella asiatica extract composition were investigated in cell, zebrafish, and human clinical experiments. The effects of the composition on the secretion of TNF-α from RAW264.7 (mouse macrophages) were studied in cell experiments, and the effects of the composition on the proliferation of HCEC (human corneal epithelial cells) and HaCaT (human immortalized epidermal cells) were also studied. The repairing effect of the composition was verified by zebrafish experiment. In the human clinical experiment, the changes in skin transdermal water loss TEWL value and skin redness a* in volunteers before and after using the gel of the composition were tested. The results showed that the composition had no significant stimulating effect on HCEC, but significantly inhibited the secretion of TNF-α by RAW cells. The composition significantly promoted the migration of HaCaT cells and the repairing of zebrafish tail fins. The human clinical experiment showed that the rate of change of skin transdermal water loss TEWL value of the gel was -17.95% (P<0.001), and skin redness was significantly reduced (P<0.01). In conclusion, the combination of Artemisia annua and Centella asiatica extract has soothing and repairing effects.
Artemisia annua; Centella asiatica; Sooth and repair; Cells; Zebrafish; Human clinical trial
Daohuan Yuan, Jiamin Huang, Ji Lin, Jiajia Tian, Xiaojun Cai, Rui He, Yong Xie. Study on the Soothing and Repairing Effects of Artemisia Annua Combined with Centella Asiatica Extract. Frontiers in Medical Science Research (2024), Vol. 6, Issue 7: 9-16. https://doi.org/10.25236/FMSR.2024.060702.
[1] Feng, X.; Cao, S.; Qiu, F.; Zhang, B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther. 2020, 216, 107650.
[2] Hsu, E. The history of qing hao in the Chinese materia medica. Trans R Soc Trop Med Hyg. 2006, 100, 505-508.
[3] Liu, C.X. Discovery and Development of Artemisinin and Related Compounds. Chinese Herbal Medicines. 2017, 9, 101-114.
[4] de Ridder, S.; van der Kooy, F.; Verpoorte, R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol. 2008, 120, 302-314.
[5] Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 2017, 46, 65-83.
[6] Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011, 17, 1217-1220.
[7] Tu, Y. The development of the antimalarial drugs with new type of chemical structure--qinghaosu and dihydroqinghaosu. Southeast Asian J Trop Med Public Health. 2004, 35, 250-251.
[8] D, Jeremic.; A, Jokic.; A, Behbud.; M, Stefanovic. A new type of sesquiterpene lactones isolated from Artemisia annua L. arteannuin B. Tetrahedron Lett. 1973, 14, 3039-3042.
[9] Shayo, A.; Buza, J.; Ishengoma, D.S. Monitoring of efficacy and safety of artemisinin-based anti-malarials for treatment of uncomplicated malaria: a review of evidence of implementation of anti-malarial therapeutic efficacy trials in Tanzania. Malar J. 2015, 14, 135.
[10] Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The birth of artemisinin. Pharmacol Ther. 2020, 216, 107658.
[11] Meshnick, S.R. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002, 32, 1655-1660.
[12] Takenaka, Y.; Seki, S.; Nishi, T.; Tanahashi, T. Two new sesquiterpenes from Artemisia annua L. J Nat Med. 2020, 74, 811-818.
[13] Shahrajabian, M.H.; Sun, W.; Cheng, Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2020, 48, 1719-1741.
[14] Knudsmark, Jessing, K.; Duke, S.O.; Cedergreeen, N. Potential ecological roles of artemisinin produced by Artemisia annua L. J Chem Ecol. 2014, 40, 100-117.
[15] Shi, C.; Li, H.; Yang, Y.; Hou, L. Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediators Inflamm. 2015, 2015, 435713.
[16] Ekiert, H.; Klimek-Szczykutowicz, M.; Rzepiela, A.; Klin, P.; Szopa, A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules. 2022, 27, 6427.
[17] Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine. 2000, 7, 427-448.
[18] Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Dańczak-Pazdrowska, A.; Brzezińska, M. Centella asiatica in dermatology: an overview. Phytother Res. 2014, 28, 1117-1124.
[19] Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J Pharm Sci. 2010, 72, 546-556.
[20] Kabir, A.U.; Samad, M.B.; D'Costa, N.M.; Akhter, F.; Ahmed, A.; Hannan, J.M. Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding. BMC Complement Altern Med. 2014, 14, 31.
[21] Sun, B.; Wu, L.; Wu, Y.; Zhang, C.; Qin, L.; Hayashi, M.; Kudo, M.; Gao, M.; Liu, T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol. 2020, 11, 568032.
[22] Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella asiatica in cosmetology. Postepy Dermatol Alergol. 2013, 30, 46-49.
[23] Lee, Y.; Choi, H.K.; N'deh, K.P.U.; Choi, Y.J.; Fan, M.; Kim, E.K.; Chung, K.H.; An, A.J.H. Inhibitory Effect of Centella asiatica Extract on DNCB-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice. Nutrients. 2020, 12, 411.
[24] Arribas-López, E.; Zand, N.; Ojo, O.; Snowden, M.J.; Kochhar, T. A Systematic Review of the Effect of Centella asiatica on Wound Healing. Int J Environ Res Public Health. 2022, 19, 3266.
[25] Jones, A.L.; Kramer, R.S. Facial Cosmetics and Attractiveness: Comparing the Effect Sizes of Professionally-Applied Cosmetics and Identity. PLoS One. 2016, 11(10): e0164218.
[26] Liu, M.; Dai, Y.; Yao, X.; Li, Y.; Luo, Y.; Xia, Y.; Gong, Z. Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice. Int Immunopharmacol. 2008, 8, 1561-1566.
[27] Wu, F.; Bian, D.; Xia, Y.; Gong, Z.; Tan, Q.; Chen, J.; Dai, Y. Identification of Major Active Ingredients Responsible for Burn Wound Healing of Centella asiatica Herbs. Evid Based Complement Alternat Med. 2012, 2012, 848093.
[28] Han, H.; Kang, K.J.; Ahn, J.K.; Hyun, G.C. DMSO Alleviates LPS-Induced Inflammatory Responses in RAW264.7 Macrophages by Inhibiting NF-κB and MAPK Activation. BioChem, 2023, 3, 91-101.
[29] Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int J Mol Sci. 2017, 19, 70.
[30] Elias, P.M. Epidermal lipids, barrier function, and desquamation. J Investig Dermatol. 1983, 80, 44s–49s.
[31] Fu, Y.P.; Liu, R.Y.; Xiao, J.H. Progress on anti-inflammatory activities of plant-derived natural products. Herald of Medicine. 2020, 39, 666-671.
[32] Ruszymah, B.H.; Chowdhury, S.R.; Manan, N.A.; Fong, O.S.; Adenan, M.I.; Saim, A.B. Aqueous extract of Centella asiatica promotes corneal epithelium wound healing in vitro. J Ethnopharmacol. 2012, 140, 333-338.
[33] Silva, Diva.; Ferreira, Marta.; Lobo, José.; Cruz, Maria.; Almeida, Isabel. Anti-Inflammatory Activity of Calendula officinalis L. Flower Extract. Cosmetics. 2021, 8, 31.
[34] Nurdin, M.; Yulianty, R.; Latief, S.; Prihantono, Abu, J.; Usman, A.N. Effects of Centella asiatica (L.) Urban extract in TNF-α levels. Gac Sanit. 2021, 35, S281-S283.
[35] Zhao, Y.; Zhao, N.; Kollie, L.; Yang, D.; Zhang, X.; Zhang, H.; Liang, Z. Sasanquasaponin from Camellia oleifera Abel Exerts an Anti-Inflammatory Effect in RAW 264.7 Cells via Inhibition of the NF-κB/MAPK Signaling Pathways. Int J Mol Sci. 2024, 25, 2149.
[36] Diniz, L.R.L.; Calado, L.L.; Duarte, A.B.S.; de Sousa, D.P. Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites. 2023, 13, 276.
[37] Wan, L.; Song, Z.; Wang, Z.; Dong, J.; Chen, Y.; Hu, J. Repair effect of Centella asiatica (L.) extract on damaged HaCaT cells studied by atomic force microscopy. J Microsc. 2023, 292, 148-157.
[38] Vaidyanathan, L.; Lokeswari, T.S. Anti-bacterial and anti-inflammatory properties of Vernonia arborea accelerate the healing of infected wounds in adult Zebrafish. BMC Complement Med Ther. 2024, 24, 95.
[39] Howe, K.; Clark, M.D.; Torroja, C.F.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013, 496, 498-503.
[40] Sehring, I.M.; Weidinger, G. Recent advancements in understanding fin regeneration in zebrafish. Wiley Interdiscip Rev Dev Biol. 2020, 9: e367.
[41] Cristiano, M.C.; Froiio, F.; Mancuso, A.; Iannone, M.; Fresta, M.; Fiorito, S.; Celia, C.; Paolino, D. In vitro and in vivo trans-epidermal water loss evaluation following topical drug delivery systems application for pharmaceutical analysis. J Pharm Biomed Anal. 2020, 186, 113295.