Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2024, 6(7); doi: 10.25236/FMSR.2024.060703.

Unraveling the Interrelationship of Microbiota, Inflammation and Obesity: Implications for the Pathophysiology of Asthma Endotypes

Author(s)

Victor I.K. Leung1,2

Corresponding Author:
Victor I.K. Leung
Affiliation(s)

1Department of Metabolism, Digestion and Reproduction, Imperial College of London, London, SW7 2AZ, U.K

2Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, U.S.A

Abstract

Asthma is a multifaceted ailment characterized by fluctuating respiratory symptoms and variable airflow constriction. Traditionally, treatments focused on symptom management, universally applicable to all asthma types. Increased understanding has led to the classification of two major asthma endotypes: T helper type 2 (Th2) cell-high asthma, marked by type 2 cytokines, eosinophilic and allergic inflammation, and immunoglobulin E (IgE) synthesis; and Th2-low endotype, characterized by neutrophilic and systemic inflammation, associated with obesity and corticosteroid resistance. Though the pathogenesis of asthma remains incompletely understood, increasing evidence suggests a link between asthma and the interplay of "inflammation, obesity, and microbiota." The NF-κB and NLRP3 signal pathways play pivotal roles in the pathophysiological mechanisms of both asthma endotypes. Obesity and dysbiosis exacerbate systemic inflammation, particularly in relation to the Th2-low endotype. Future asthma treatments hold promises by targeting the underlying pathophysiology and personalizing interventions according to the specific endotypes. This review provides a synthesis of current research exploring the interconnected roles of inflammation, obesity, and the microbiota in asthma pathophysiology. However, further investigation is warranted to deepen our understanding and optimize therapeutic interventions for asthma management.

Keywords

Asthma, Endotypes, Phenotypes, Microbiota, Dysbiosis, Inflammation, Obesity, Immune system, Eosinophilic, Neutrophilic

Cite This Paper

Victor I.K. Leung. Unraveling the Interrelationship of Microbiota, Inflammation and Obesity: Implications for the Pathophysiology of Asthma Endotypes. Frontiers in Medical Science Research (2024), Vol. 6, Issue 7: 17-35. https://doi.org/10.25236/FMSR.2024.060703.

References

[1] Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. The Lancet 2018, 391, 783–800, doi:10.1016/S0140-6736(17)33311-1.

[2] Salmanpour, F.; Kian, N.; Samieefar, N.; Khazeei Tabari, M.A.; Rezaei, N. Asthma and Vitamin D Deficiency: Occurrence, Immune Mechanisms, and New Perspectives. J Immunol Res 2022, 2022, 6735900, doi:10.1155/2022/6735900.

[3] Fainardi, V.; Passadore, L.; Labate, M.; Pisi, G.; Esposito, S. An Overview of the Obese-Asthma Phenotype in Children. Int J Environ Res Public Health 2022, 19, 636, doi:10.3390/ijerph19020636.

[4] Kuruvilla, M.E.; Lee, F.E.-H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol 2019, 56, 219–233, doi:10.1007/s12016-018-8712-1.

[5] Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Arron, J.R.; Koth, L.L.; Fahy, J.V. T-Helper Type 2–Driven Inflammation Defines Major Subphenotypes of Asthma. Am J Respir Crit Care Med 2009, 180, 388–395, doi:10.1164/rccm.200903-0392OC.

[6] Boulet, L.-P.; Levy, M.L.; Decker, R.; Rurey, K. A POCKET GUIDUEpMFAdTOaERtRIeALdH- DEMOAaLyT2H02P2ROFESSIONALS GINCAhSaicr: IeHnecleenCCROoPem YdRmdIGeitHlt, TeMEeDBBS PhD GINA Board of Directors. 2022.

[7] Chen, X.; Kang, Y.-B.; Wang, L.-Q.; Li, Y.; Luo, Y.-W.; Zhu, Z.; Chen, R. Addition to Inhaled Corticosteroids of Leukotriene Receptor Antagonists versus Theophylline for Symptomatic Asthma: A Meta-Analysis. J Thorac Dis 2015, 7, 644–652, doi:10.3978/j.issn.2072-1439.2015.04.12.

[8] Alwarith, J.; Kahleova, H.; Crosby, L.; Brooks, A.; Brandon, L.; Levin, S.M.; Barnard, N.D. The Role of Nutrition in Asthma Prevention and Treatment. Nutrition Reviews 2020, 78, 928–938, doi: 10.1093/ nutrit/nuaa005.

[9] Fahy, J.V. Type 2 Inflammation in Asthma — Present in Most, Absent in Many. Nat Rev Immunol 2015, 15, 57–65, doi:10.1038/nri3786.

[10] Habib, N.; Pasha, M.A.; Tang, D.D. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022, 11, 2764, doi:10.3390/cells11172764.

[11] Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity 2019, 50, 975–991, doi:10.1016/j.immuni.2019.03.018.

[12] Barcik, W.; Boutin, R.C.T.; Sokolowska, M.; Finlay, B.B. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity 2020, 52, 241–255, doi:10.1016/j.immuni.2020.01.007.

[13] Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The Intestinal Microbiota Fuelling Metabolic Inflammation. Nat Rev Immunol 2020, 20, 40–54, doi:10.1038/s41577-019-0198-4.

[14] Frati, F.; Salvatori, C.; Incorvaia, C.; Bellucci, A.; Di Cara, G.; Marcucci, F.; Esposito, S. The Role of the Microbiome in Asthma: The Gut−Lung Axis. Int J Mol Sci 2018, 20, 123, doi: 10.3390/ijms 20010123.

[15] Duranti, S.; Ferrario, C.; van Sinderen, D.; Ventura, M.; Turroni, F. Obesity and Microbiota: An Example of an Intricate Relationship. Genes & Nutrition 2017, 12, 18, doi:10.1186/s12263-017-0566-2.

[16] Sharma, V.; Cowan, D.C. Obesity, Inflammation, and Severe Asthma: An Update. Curr Allergy Asthma Rep 2021, 21, 46, doi:10.1007/s11882-021-01024-9.

[17] Zeng, M.Y.; Inohara, N.; Nuñez, G. Mechanisms of Inflammation-Driven Bacterial Dysbiosis in the Gut. Mucosal Immunol 2017, 10, 18–26, doi:10.1038/mi.2016.75.

[18] Tashiro, H.; Shore, S.A. Obesity and Severe Asthma. Allergology International 2019, 68, 135–142, doi:10.1016/j.alit.2018.10.004.

[19] Peters, U.; Dixon, A.E.; Forno, E. Obesity and Asthma. Journal of Allergy and Clinical Immunology 2018, 141, 1169–1179, doi:10.1016/j.jaci.2018.02.004.

[20] Campbell, C.; Kandalgaonkar, M.R.; Golonka, R.M.; Yeoh, B.S.; Vijay-Kumar, M.; Saha, P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023, 11, 294, doi:10.3390/biomedicines11020294.

[21] Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, Inflammation, and the Gut Microbiota. The Lancet Diabetes & Endocrinology 2015, 3, 207–215, doi:10.1016/S2213-8587(14)70134-2.

[22] Mishra, V.; Banga, J.; Silveyra, P. Oxidative Stress and Cellular Pathways of Asthma and Inflammation: Therapeutic Strategies and Pharmacological Targets. Pharmacol Ther 2018, 181, 169–182, doi:10.1016/j.pharmthera.2017.08.011.

[23] Papi, A.; Blasi, F.; Canonica, G.W.; Morandi, L.; Richeldi, L.; Rossi, A. Treatment Strategies for Asthma: Reshaping the Concept of Asthma Management. Allergy, Asthma & Clinical Immunology 2020, 16, 75, doi:10.1186/s13223-020-00472-8.

[24] Wood, L.G.; Baines, K.J.; Fu, J.; Scott, H.A.; Gibson, P.G. The Neutrophilic Inflammatory Phenotype Is Associated with Systemic Inflammation in Asthma. Chest 2012, 142, 86–93, doi:10.1378/chest.11-1838.

[25] Fu, J.; Baines, K.J.; Wood, L.G.; Gibson, P.G. Systemic Inflammation Is Associated with Differential Gene Expression and Airway Neutrophilia in Asthma. OMICS 2013, 17, 187–199, doi:10.1089/omi. 2012.0104.

[26] Zhong, J.; Shi, G. Editorial: Regulation of Inflammation in Chronic Disease. Front. Immunol. 2019, 10, 737, doi:10.3389/fimmu.2019.00737.

[27] Medzhitov, R. Inflammation 2010: New Adventures of an Old Flame. Cell 2010, 140, 771–776, doi:10.1016/j.cell.2010.03.006.

[28] Yang, J.; Wise, L.; Fukuchi, K.-I. TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer’s Disease. Front Immunol 2020, 11, 724, doi:10.3389/fimmu. 2020. 00724.

[29] Sendler, M.; van den Brandt, C.; Glaubitz, J.; Wilden, A.; Golchert, J.; Weiss, F.U.; Homuth, G.; De Freitas Chama, L.L.; Mishra, N.; Mahajan, U.M.; et al. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology 2020, 158, 253-269.e14, doi:10.1053/j.gastro.2019.09.040.

[30] Walker, J.A.; McKenzie, A.N.J. TH2 Cell Development and Function. Nat Rev Immunol 2018, 18, 121–133, doi:10.1038/nri.2017.118.

[31] Ting, J.P.Y.; Harton, J.A. NLRP3 Moonlights in TH2 Polarization. Nat Immunol 2015, 16, 794–796, doi:10.1038/ni.3223.

[32] Theofani, E.; Semitekolou, M.; Morianos, I.; Samitas, K.; Xanthou, G. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med 2019, 8, 1615, doi:10.3390/jcm8101615.

[33] Stacey, M.A.; Sun, G.; Vassalli, G.; Marini, M.; Bellini, A.; Mattoli, S. The Allergen Der P1 Induces NF-KappaB Activation through Interference with IkappaB Alpha Function in Asthmatic Bronchial Epithelial Cells. Biochem Biophys Res Commun 1997, 236, 522–526, doi:10.1006/bbrc.1997.6997.

[34] McKinley, L.; Alcorn, J.F.; Peterson, A.; Dupont, R.B.; Kapadia, S.; Logar, A.; Henry, A.; Irvin, C.G.; Piganelli, J.D.; Ray, A.; et al. TH17 Cells Mediate Steroid-Resistant Airway Inflammation and Airway Hyperresponsiveness in Mice. J Immunol 2008, 181, 4089–4097, doi:10.4049/jimmunol. 181.6.4089.

[35] Kudo, M.; Melton, A.C.; Chen, C.; Engler, M.B.; Huang, K.E.; Ren, X.; Wang, Y.; Bernstein, X.; Li, J.T.; Atabai, K.; et al. IL-17A Produced by Αβ T Cells Drives Airway Hyper-Responsiveness in Mice and Enhances Mouse and Human Airway Smooth Muscle Contraction. Nat Med 2012, 18, 547–554, doi:10.1038/nm.2684.

[36] Choy, D.F.; Hart, K.M.; Borthwick, L.A.; Shikotra, A.; Nagarkar, D.R.; Siddiqui, S.; Jia, G.; Ohri, C.M.; Doran, E.; Vannella, K.M.; et al. TH2 and TH17 Inflammatory Pathways Are Reciprocally Regulated in Asthma. Sci Transl Med 2015, 7, 301ra129, doi:10.1126/scitranslmed.aab3142.

[37] Hastie, A.T.; Moore, W.C.; Li, H.; Rector, B.M.; Ortega, V.E.; Pascual, R.M.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R.; National Heart, Lung, and Blood Institute’s Severe Asthma Research Program Biomarker Surrogates Do Not Accurately Predict Sputum Eosinophil and Neutrophil Percentages in Asthmatic Subjects. J Allergy Clin Immunol 2013, 132, 72–80, doi:10.1016/j.jaci.2013.03.044.

[38] Na, H.; Lim, H.; Choi, G.; Kim, B.-K.; Kim, S.-H.; Chang, Y.-S.; Nurieva, R.; Dong, C.; Chang, S.H.; Chung, Y. Concomitant Suppression of TH2 and TH17 Cell Responses in Allergic Asthma by Targeting Retinoic Acid Receptor-Related Orphan Receptor Γt. J Allergy Clin Immunol 2018, 141, 2061-2073.e5, doi:10.1016/j.jaci.2017.07.050.

[39] Zhang, H.; Fu, R.; Guo, C.; Huang, Y.; Wang, H.; Wang, S.; Zhao, J.; Yang, N. Anti-DsDNA Antibodies Bind to TLR4 and Activate NLRP3 Inflammasome in Lupus Monocytes/Macrophages. J Transl Med 2016, 14, 156, doi:10.1186/s12967-016-0911-z.

[40] Zhao, J.; Wang, H.; Dai, C.; Wang, H.; Zhang, H.; Huang, Y.; Wang, S.; Gaskin, F.; Yang, N.; Fu, S.M. P2X7 Blockade Attenuates Murine Lupus Nephritis by Inhibiting Activation of the NLRP3/ASC/Caspase 1 Pathway. Arthritis Rheum 2013, 65, 3176–3185, doi:10.1002/art.38174.

[41] Zhao, C.; Gu, Y.; Zeng, X.; Wang, J. NLRP3 Inflammasome Regulates Th17 Differentiation in Rheumatoid Arthritis. Clinical Immunology 2018, 197, 154–160, doi:10.1016/j.clim.2018.09.007.

[42] Zakeri, A.; Russo, M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Frontiers in Immunology 2018, 9.

[43] Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century. Am J Clin Nutr 2005, 81, 341–354, doi:10.1093/ajcn.81.2.341.

[44] Scott, H.A.; Gibson, P.G.; Garg, M.L.; Pretto, J.J.; Morgan, P.J.; Callister, R.; Wood, L.G. Dietary Restriction and Exercise Improve Airway Inflammation and Clinical Outcomes in Overweight and Obese Asthma: A Randomized Trial. Clin Exp Allergy 2013, 43, 36–49, doi:10.1111/cea.12004.

[45] Mutius, E.; Braun-Fahrländer, C.; Schierl, R.; Riedler, J.; Ehlermann, S.; Maisch, S.; Waser, M.; Nowak, D. Exposure to Endotoxin or Other Bacterial Components Might Protect against the Development of Atopy. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 2000, 30, 1230–1234, doi:10.1046/j.1365-2222.2000.00959.x.

[46] García, L.N.; Leimgruber, C.; Uribe Echevarría, E.M.; Acosta, P.L.; Brahamian, J.M.; Polack, F.P.; Miró, M.S.; Quintar, A.A.; Sotomayor, C.E.; Maldonado, C.A. Protective Phenotypes of Club Cells and Alveolar Macrophages Are Favored as Part of Endotoxin-Mediated Prevention of Asthma. Exp Biol Med (Maywood) 2015, 240, 904–916, doi:10.1177/1535370214562338.

[47] Williams, L.K.; Ownby, D.R.; Maliarik, M.J.; Johnson, C.C. The Role of Endotoxin and Its Receptors in Allergic Disease. Ann Allergy Asthma Immunol 2005, 94, 323–332, doi:10.1016/S1081-1206(10)60983-0.

[48] Esty, B.; Phipatanakul, W. School Exposure and Asthma. Ann Allergy Asthma Immunol 2018, 120, 482–487, doi:10.1016/j.anai.2018.01.028.

[49] Eisenbarth, S.C.; Piggott, D.A.; Huleatt, J.W.; Visintin, I.; Herrick, C.A.; Bottomly, K. Lipopolysaccharide-Enhanced, Toll-like Receptor 4-Dependent T Helper Cell Type 2 Responses to Inhaled Antigen. J Exp Med 2002, 196, 1645–1651, doi:10.1084/jem.20021340.

[50] Dong, L.; Li, H.; Wang, S.; Li, Y. Different Doses of Lipopolysaccharides Regulate the Lung Inflammation of Asthmatic Mice via TLR4 Pathway in Alveolar Macrophages. J Asthma 2009, 46, 229–233, doi: 10.1080/02770900802610050.

[51] Zmora, N.; Suez, J.; Elinav, E. You Are What You Eat: Diet, Health and the Gut Microbiota. Nat Rev Gastroenterol Hepatol 2019, 16, 35–56, doi:10.1038/s41575-018-0061-2.

[52] Peters, J.I.; McKinney, J.M.; Smith, B.; Wood, P.; Forkner, E.; Galbreath, A.D. Impact of Obesity in Asthma: Evidence from a Large Prospective Disease Management Study. Ann Allergy Asthma Immunol 2011, 106, 30–35, doi:10.1016/j.anai.2010.10.015.

[53] Thompson, C.A.; Eslick, S.R.; Berthon, B.S.; Wood, L.G. Asthma Medication Use in Obese and Healthy Weight Asthma: Systematic Review/Meta-Analysis. Eur Respir J 2021, 57, 2000612, doi:10.1183/13993003.00612-2020.

[54] Yücel, Ü.Ö.; Çalış, A.G. The Relationship between General and Abdominal Obesity, Nutrition and Respiratory Functions in Adult Asthmatics. J Asthma 2022, 1–8, doi:10.1080/02770903.2022.2137038.

[55] Au Yeung, S.L.; Li, A.M.; Schooling, C.M. A Life Course Approach to Elucidate the Role of Adiposity in Asthma Risk: Evidence from a Mendelian Randomisation Study. J Epidemiol Community Health 2021, 75, 277–281, doi:10.1136/jech-2020-213745.

[56] Chen, Y.-C.; Fan, H.-Y.; Huang, Y.-T.; Huang, S.-Y.; Liou, T.-H.; Lee, Y.L. Causal Relationships between Adiposity and Childhood Asthma: Bi-Directional Mendelian Randomization Analysis. Int J Obes (Lond) 2019, 43, 73–81, doi:10.1038/s41366-018-0160-8.

[57] Gupta, S.; Lodha, R.; Kabra, S.K. Asthma, GERD and Obesity: Triangle of Inflammation. Indian J Pediatr 2018, 85, 887–892, doi:10.1007/s12098-017-2484-0.

[58] Özbey, Ü.; Balaban, S.; Sözener, Z.Ç.; Uçar, A.; Mungan, D.; Mısırlıgil, Z. The Effects of Diet-Induced Weight Loss on Asthma Control and Quality of Life in Obese Adults with Asthma: A Randomized Controlled Trial. Journal of Asthma 2020, 57, 618–626, doi:10.1080/02770903.2019.1590594.

[59] Guerrero, S.C.; Panettieri, R.A.; Rastogi, D. Mechanistic Links Between Obesity and Airway Pathobiology Inform Therapies for Obesity-Related Asthma. Paediatr Drugs 2023, 25, 283–299, doi:10.1007/s40272-022-00554-7.

[60] Conus, S.; Bruno, A.; Simon, H.-U. Leptin Is an Eosinophil Survival Factor. J Allergy Clin Immunol 2005, 116, 1228–1234, doi:10.1016/j.jaci.2005.09.003.

[61] Bruno, A.; Conus, S.; Schmid, I.; Simon, H.-U. Apoptotic Pathways Are Inhibited by Leptin Receptor Activation in Neutrophils. J Immunol 2005, 174, 8090–8096, doi:10.4049/jimmunol.174.12.8090.

[62] Zarkesh-Esfahani, H.; Pockley, A.G.; Wu, Z.; Hellewell, P.G.; Weetman, A.P.; Ross, R.J.M. Leptin Indirectly Activates Human Neutrophils via Induction of TNF-Alpha. J Immunol 2004, 172, 1809–1814, doi:10.4049/jimmunol.172.3.1809.

[63] Kato, H.; Ueki, S.; Kamada, R.; Kihara, J.; Yamauchi, Y.; Suzuki, T.; Takeda, M.; Itoga, M.; Chihara, M.; Ito, W.; et al. Leptin Has a Priming Effect on Eotaxin-Induced Human Eosinophil Chemotaxis. Int Arch Allergy Immunol 2011, 155, 335–344, doi:10.1159/000321195.

[64] Watanabe, K.; Suzukawa, M.; Kawauchi-Watanabe, S.; Igarashi, S.; Asari, I.; Imoto, S.; Tashimo, H.; Fukami, T.; Hebisawa, A.; Tohma, S.; et al. Leptin-Producing Monocytes in the Airway Submucosa May Contribute to Asthma Pathogenesis. Respir Investig 2023, 61, 5–15, doi:10.1016/j.resinv. 2022.09. 005.

[65] Vollmer, C.M.; Dias, A.S.O.; Lopes, L.M.; Kasahara, T.M.; Delphim, L.; Silva, J.C.C.; Lourenço, L.P.; Gonçalves, H.C.; Linhares, U.C.; Gupta, S.; et al. Leptin Favors Th17/Treg Cell Subsets Imbalance Associated with Allergic Asthma Severity. Clinical & Translational All 2022, 12, doi:10.1002/clt2.12153.

[66] Shore, S.A.; Schwartzman, I.N.; Mellema, M.S.; Flynt, L.; Imrich, A.; Johnston, R.A. Effect of Leptin on Allergic Airway Responses in Mice. J Allergy Clin Immunol 2005, 115, 103–109, doi:10.1016/j.jaci. 2004.10.007.

[67] Liang, L.; Hur, J.; Kang, J.Y.; Rhee, C.K.; Kim, Y.K.; Lee, S.Y. Effect of the Anti-IL-17 Antibody on Allergic Inflammation in an Obesity-Related Asthma Model. Korean J Intern Med 2018, 33, 1210–1223, doi:10.3904/kjim.2017.207.

[68] Sánchez-Ortega, H.; Jiménez-Cortegana, C.; Novalbos-Ruiz, J.P.; Gómez-Bastero, A.; Soto-Campos, J.G.; Sánchez-Margalet, V. Role of Leptin as a Link between Asthma and Obesity: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022, 24, 546, doi:10.3390/ijms24010546.

[69] Muc, M.; Todo-Bom, A.; Mota-Pinto, A.; Vale-Pereira, S.; Loureiro, C. Leptin and Resistin in Overweight Patients with and without Asthma. Allergol Immunopathol (Madr) 2014, 42, 415–421, doi:10.1016/j.aller.2013.03.004.

[70] Machado, M.E.; Porto, L.C.; Alves Galvão, M.G.; Sant’Anna, C.C.; Lapa E Silva, J.R. SNPs, Adipokynes and Adiposity in Children with Asthma. J Asthma 2023, 60, 446–457, doi:10.1080/02770903. 2022.2077218.

[71] Maffeis, L.; Agostoni, C.V.; Marafon, D.P.; Terranova, L.; Giavoli, C.; Milani, G.P.; Lelii, M.; Madini, B.; Marchisio, P.; Patria, M.F. Cytokines Profile and Lung Function in Children with Obesity and Asthma: A Case Control Study. Children 2022, 9, 1462, doi:10.3390/children9101462.

[72] Otelea, M.R.; Arghir, O.C.; Zugravu, C.; Rascu, A. Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021, 22, 8971, doi:10.3390/ijms22168971.

[73] Yamashita, T.; Lakota, K.; Taniguchi, T.; Yoshizaki, A.; Sato, S.; Hong, W.; Zhou, X.; Sodin-Semrl, S.; Fang, F.; Asano, Y.; et al. An Orally-Active Adiponectin Receptor Agonist Mitigates Cutaneous Fibrosis, Inflammation and Microvascular Pathology in a Murine Model of Systemic Sclerosis. Sci Rep 2018, 8, 11843, doi:10.1038/s41598-018-29901-w.

[74] Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am J Physiol Cell Physiol 2021, 320, C375–C391, doi:10.1152/ajpcell.00379.2020.

[75] de Lima Azambuja, R.; da Costa Santos Azambuja, L.S.E.; Costa, C.; Rufino, R. Adiponectin in Asthma and Obesity: Protective Agent or Risk Factor for More Severe Disease? Lung 2015, 193, 749–755, doi:10.1007/s00408-015-9793-8.

[76] Ying, X.; Lin, J.; Yuan, S.; Pan, C.; Dong, W.; Zhang, J.; Zhang, L.; Lin, J.; Yin, Y.; Wu, J. Comparison of Pulmonary Function and Inflammation in Children/Adolescents with New-Onset Asthma with Different Adiposity Statuses. Nutrients 2022, 14, 2968, doi:10.3390/nu14142968.

[77] Nyambuya, T.M.; Dludla, P.V.; Mxinwa, V.; Nkambule, B.B. Obesity-Related Asthma in Children Is Characterized by T-Helper 1 Rather than T-Helper 2 Immune Response: A Meta-Analysis. Annals of Allergy, Asthma & Immunology 2020, 125, 425-432.e4, doi:10.1016/j.anai.2020.06.020.

[78] Valverde-Molina, J.; García-Marcos, L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023, 15, 486, doi:10.3390/nu 15030486.

[79] Galazzo, G.; van Best, N.; Bervoets, L.; Dapaah, I.O.; Savelkoul, P.H.; Hornef, M.W.; Lau, S.; Hamelmann, E.; Penders, J.; Hutton, E.K.; et al. Development of the Microbiota and Associations With Birth Mode, Diet, and Atopic Disorders in a Longitudinal Analysis of Stool Samples, Collected From Infancy Through Early Childhood. Gastroenterology 2020, 158, 1584–1596, doi:10.1053/j.gastro. 2020.01.024.

[80] Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy. Pediatrics 2006, 118, 511–521, doi:10.1542/peds.2005-2824.

[81] Neu, J.; Rushing, J. Cesarean versus Vaginal Delivery: Long Term Infant Outcomes and the Hygiene Hypothesis. Clin Perinatol 2011, 38, 321–331, doi:10.1016/j.clp.2011.03.008.

[82] Sapartini, G.; Wong, G.W.K.; Indrati, A.R.; Kartasasmita, C.B.; Setiabudiawan, B. Stunting as a Risk Factor for Asthma: The Role of Vitamin D, Leptin, IL-4, and CD23. Medicina (Kaunas) 2022, 58, 1236, doi:10.3390/medicina58091236.

[83] Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota across Multiple Body Habitats in Newborns. Proc Natl Acad Sci U S A 2010, 107, 11971–11975, doi:10.1073/pnas.1002601107.

[84] Thavagnanam, S.; Fleming, J.; Bromley, A.; Shields, M.D.; Cardwell, C.R. A Meta-Analysis of the Association between Caesarean Section and Childhood Asthma. Clin Exp Allergy 2008, 38, 629–633, doi:10.1111/j.1365-2222.2007.02780.x.

[85] Coppa, G.V.; Zampini, L.; Galeazzi, T.; Gabrielli, O. Prebiotics in Human Milk: A Review. Dig Liver Dis 2006, 38 Suppl 2, S291-294, doi:10.1016/S1590-8658(07)60013-9.

[86] Xue, M.; Dehaas, E.; Chaudhary, N.; O’Byrne, P.; Satia, I.; Kurmi, O.P. Breastfeeding and Risk of Childhood Asthma: A Systematic Review and Meta-Analysis. ERJ Open Res 2021, 7, 00504–02021, doi:10.1183/23120541.00504-2021.

[87] Dogaru, C.M.; Nyffenegger, D.; Pescatore, A.M.; Spycher, B.D.; Kuehni, C.E. Breastfeeding and Childhood Asthma: Systematic Review and Meta-Analysis. Am J Epidemiol 2014, 179, 1153–1167, doi:10.1093/aje/kwu072.

[88] Fallani, M.; Amarri, S.; Uusijarvi, A.; Adam, R.; Khanna, S.; Aguilera, M.; Gil, A.; Vieites, J.M.; Norin, E.; Young, D.; et al. Determinants of the Human Infant Intestinal Microbiota after the Introduction of First Complementary Foods in Infant Samples from Five European Centres. Microbiology 2011, 157, 1385–1392, doi:10.1099/mic.0.042143-0.

[89] Bergström, A.; Skov, T.H.; Bahl, M.I.; Roager, H.M.; Christensen, L.B.; Ejlerskov, K.T.; Mølgaard, C.; Michaelsen, K.F.; Licht, T.R. Establishment of Intestinal Microbiota during Early Life: A Longitudinal, Explorative Study of a Large Cohort of Danish Infants. Appl Environ Microbiol 2014, 80, 2889–2900, doi:10.1128/AEM.00342-14.

[90] Bejaoui, S.; Poulsen, M. The Impact of Early Life Antibiotic Use on Atopic and Metabolic Disorders. Evol Med Public Health 2020, 2020, 279–289, doi:10.1093/emph/eoaa039.

[91] Yamamoto-Hanada, K.; Yang, L.; Narita, M.; Saito, H.; Ohya, Y. Influence of Antibiotic Use in Early Childhood on Asthma and Allergic Diseases at Age 5. Annals of Allergy, Asthma & Immunology 2017, 119, 54–58, doi:10.1016/j.anai.2017.05.013.

[92] Ni, J.; Friedman, H.; Boyd, B.C.; McGurn, A.; Babinski, P.; Markossian, T.; Dugas, L.R. Early Antibiotic Exposure and Development of Asthma and Allergic Rhinitis in Childhood. BMC Pediatr 2019, 19, 225, doi:10.1186/s12887-019-1594-4.

[93] Patrick, D.M.; Sbihi, H.; Dai, D.L.Y.; Al Mamun, A.; Rasali, D.; Rose, C.; Marra, F.; Boutin, R.C.T.; Petersen, C.; Stiemsma, L.T.; et al. Decreasing Antibiotic Use, the Gut Microbiota, and Asthma Incidence in Children: Evidence from Population-Based and Prospective Cohort Studies. The Lancet Respiratory Medicine 2020, 8, 1094–1105, doi:10.1016/S2213-2600(20)30052-7.

[94] Toivonen, L.; Schuez-Havupalo, L.; Karppinen, S.; Waris, M.; Hoffman, K.L.; Camargo, C.A.; Hasegawa, K.; Peltola, V. Antibiotic Treatments During Infancy, Changes in Nasal Microbiota, and Asthma Development: Population-Based Cohort Study. Clinical Infectious Diseases 2021, 72, 1546–1554, doi:10.1093/cid/ciaa262.

[95] Korpela, K.; Salonen, A.; Virta, L.J.; Kekkonen, R.A.; Forslund, K.; Bork, P.; de Vos, W.M. Intestinal Microbiome Is Related to Lifetime Antibiotic Use in Finnish Pre-School Children. Nat Commun 2016, 7, 10410, doi:10.1038/ncomms10410.

[96] Alsharairi, N.A. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci 2020, 21, 9580, doi:10.3390/ijms21249580.

[97] Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut Microbiota Metabolism of Dietary Fiber Influences Allergic Airway Disease and Hematopoiesis. Nat Med 2014, 20, 159–166, doi:10.1038/nm.3444.

[98] Halnes, I.; Baines, K.J.; Berthon, B.S.; MacDonald-Wicks, L.K.; Gibson, P.G.; Wood, L.G. Soluble Fibre Meal Challenge Reduces Airway Inflammation and Expression of GPR43 and GPR41 in Asthma. Nutrients 2017, 9, 57, doi:10.3390/nu9010057.

[99] Pérez-Losada, M.; Authelet, K.J.; Hoptay, C.E.; Kwak, C.; Crandall, K.A.; Freishtat, R.J. Pediatric Asthma Comprises Different Phenotypic Clusters with Unique Nasal Microbiotas. Microbiome 2018, 6, 179, doi: 10.1186/s40168-018-0564-7.

[100] Depner, M.; Ege, M.J.; Cox, M.J.; Dwyer, S.; Walker, A.W.; Birzele, L.T.; Genuneit, J.; Horak, E.; Braun-Fahrländer, C.; Danielewicz, H.; et al. Bacterial Microbiota of the Upper Respiratory Tract and Childhood Asthma. J Allergy Clin Immunol 2017, 139, 826-834.e13, doi:10.1016/j.jaci.2016.05.050.

[101] Zhang, X.; Zhang, X.; Zhang, N.; Wang, X.; Sun, L.; Chen, N.; Zhao, S.; He, Q. Airway Microbiome, Host Immune Response and Recurrent Wheezing in Infants with Severe Respiratory Syncytial Virus Bronchiolitis. Pediatr Allergy Immunol 2020, 31, 281–289, doi:10.1111/pai.13183.

[102] Mansbach, J.M.; Luna, P.N.; Shaw, C.A.; Hasegawa, K.; Petrosino, J.F.; Piedra, P.A.; Sullivan, A.F.; Espinola, J.A.; Stewart, C.J.; Camargo, C.A. Increased Moraxella and Streptococcus Species Abundance after Severe Bronchiolitis Is Associated with Recurrent Wheezing. J Allergy Clin Immunol 2020, 145, 518-527.e8, doi:10.1016/j.jaci.2019.10.034.

[103] Tang, H.H.F.; Lang, A.; Teo, S.M.; Judd, L.M.; Gangnon, R.; Evans, M.D.; Lee, K.E.; Vrtis, R.; Holt, P.G.; Lemanske, R.F.; et al. Developmental Patterns in the Nasopharyngeal Microbiome during Infancy Are Associated with Asthma Risk. J Allergy Clin Immunol 2021, 147, 1683–1691, doi:10.1016/j. jaci. 2020.10.009.

[104] Zhou, Y.; Jackson, D.; Bacharier, L.B.; Mauger, D.; Boushey, H.; Castro, M.; Durack, J.; Huang, Y.; Lemanske, R.F.; Storch, G.A.; et al. The Upper-Airway Microbiota and Loss of Asthma Control among Asthmatic Children. Nat Commun 2019, 10, 5714, doi:10.1038/s41467-019-13698-x.

[105] McCauley, K.; Durack, J.; Valladares, R.; Fadrosh, D.W.; Lin, D.L.; Calatroni, A.; LeBeau, P.K.; Tran, H.T.; Fujimura, K.E.; LaMere, B.; et al. Distinct Nasal Airway Bacterial Microbiotas Differentially Relate to Exacerbation in Pediatric Patients with Asthma. J Allergy Clin Immunol 2019, 144, 1187–1197, doi:10.1016/j.jaci.2019.05.035.

[106] Teo, S.M.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; Holt, B.J.; Hales, B.J.; Walker, M.L.; Hollams, E.; et al. The Infant Nasopharyngeal Microbiome Impacts Severity of Lower Respiratory Infection and Risk of Asthma Development. Cell Host Microbe 2015, 17, 704–715, doi:10.1016/j. chom. 2015.03.008.

[107] Adami, A.; Bracken, S. Breathing Better Through Bugs: Asthma and the Microbiome. The Yale Journal of Biology and Medicine 2016, 89, 309–324.

[108] Sudo, N.; Sawamura, S.; Tanaka, K.; Aiba, Y.; Kubo, C.; Koga, Y. The Requirement of Intestinal Bacterial Flora for the Development of an IgE Production System Fully Susceptible to Oral Tolerance Induction. J Immunol 1997, 159, 1739–1745.

[109] Noverr, M.C.; Noggle, R.M.; Toews, G.B.; Huffnagle, G.B. Role of Antibiotics and Fungal Microbiota in Driving Pulmonary Allergic Responses. Infect Immun 2004, 72, 4996–5003, doi:10.1128/IAI.72.9.4996-5003.2004.

[110] Hill, D.A.; Siracusa, M.C.; Abt, M.C.; Kim, B.S.; Kobuley, D.; Kubo, M.; Kambayashi, T.; Larosa, D.F.; Renner, E.D.; Orange, J.S.; et al. Commensal Bacteria-Derived Signals Regulate Basophil Hematopoiesis and Allergic Inflammation. Nat Med 2012, 18, 538–546, doi:10.1038/nm.2657.

[111] Essilfie, A.-T.; Simpson, J.L.; Horvat, J.C.; Preston, J.A.; Dunkley, M.L.; Foster, P.S.; Gibson, P.G.; Hansbro, P.M. Haemophilus Influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease. PLoS Pathog 2011, 7, e1002244, doi:10.1371/journal.ppat.1002244.

[112] Wu, K.K.-L.; Cheung, S.W.-M.; Cheng, K.K.-Y. NLRP3 Inflammasome Activation in Adipose Tissues and Its Implications on Metabolic Diseases. Int J Mol Sci 2020, 21, 4184, doi:10. 3390/ ijms 21114184.

[113] Scott, H.A.; Ng, S.H.; McLoughlin, R.F.; Valkenborghs, S.R.; Nair, P.; Brown, A.C.; Carroll, O.R.; Horvat, J.C.; Wood, L.G. Effect of Obesity on Airway and Systemic Inflammation in Adults with Asthma: A Systematic Review and Meta-Analysis. Thorax 2023, thoraxjnl-2022-219268, doi:10.1136/thorax-2022-219268.

[114] Kern, P.A.; Saghizadeh, M.; Ong, J.M.; Bosch, R.J.; Deem, R.; Simsolo, R.B. The Expression of Tumor Necrosis Factor in Human Adipose Tissue. Regulation by Obesity, Weight Loss, and Relationship to Lipoprotein Lipase. J Clin Invest 1995, 95, 2111–2119.

[115] Krogh-Madsen, R.; Plomgaard, P.; Møller, K.; Mittendorfer, B.; Pedersen, B.K. Influence of TNF-Alpha and IL-6 Infusions on Insulin Sensitivity and Expression of IL-18 in Humans. Am J Physiol Endocrinol Metab 2006, 291, E108-114, doi:10.1152/ajpendo.00471.2005.

[116] Elgazar-Carmon, V.; Rudich, A.; Hadad, N.; Levy, R. Neutrophils Transiently Infiltrate Intra-Abdominal Fat Early in the Course of High-Fat Feeding. J Lipid Res 2008, 49, 1894–1903, doi:10.1194/jlr.M800132-JLR200.

[117] Hadad, N.; Burgazliev, O.; Elgazar-Carmon, V.; Solomonov, Y.; Wueest, S.; Item, F.; Konrad, D.; Rudich, A.; Levy, R. Induction of Cytosolic Phospholipase A2α Is Required for Adipose Neutrophil Infiltration and Hepatic Insulin Resistance Early in the Course of High-Fat Feeding. Diabetes 2013, 62, 3053–3063, doi:10.2337/db12-1300.

[118] Talukdar, S.; Oh, D.Y.; Bandyopadhyay, G.; Li, D.; Xu, J.; McNelis, J.; Lu, M.; Li, P.; Yan, Q.; Zhu, Y.; et al. Neutrophils Mediate Insulin Resistance in Mice Fed a High-Fat Diet through Secreted Elastase. Nat Med 2012, 18, 1407–1412, doi:10.1038/nm.2885.

[119] Kenđel Jovanović, G.; Mrakovcic-Sutic, I.; Pavičić Žeželj, S.; Šuša, B.; Rahelić, D.; Klobučar Majanović, S. The Efficacy of an Energy-Restricted Anti-Inflammatory Diet for the Management of Obesity in Younger Adults. Nutrients 2020, 12, 3583, doi:10.3390/nu12113583.

[120] Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772, doi:10.2337/db06-1491.

[121] Yun, Y.; Kim, H.-N.; Kim, S.E.; Heo, S.G.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L. Comparative Analysis of Gut Microbiota Associated with Body Mass Index in a Large Korean Cohort. BMC Microbiol 2017, 17, 151, doi:10.1186/s12866-017-1052-0.

[122] Debédat, J.; Clément, K.; Aron-Wisnewsky, J. Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Curr Obes Rep 2019, 8, 229–242, doi:10.1007/s13679-019-00351-3.

[123] Bailey, L.C.; Forrest, C.B.; Zhang, P.; Richards, T.M.; Livshits, A.; DeRusso, P.A. Association of Antibiotics in Infancy with Early Childhood Obesity. JAMA Pediatr 2014, 168, 1063–1069, doi:10.1001/jamapediatrics.2014.1539.

[124] Azad, M.B.; Bridgman, S.L.; Becker, A.B.; Kozyrskyj, A.L. Infant Antibiotic Exposure and the Development of Childhood Overweight and Central Adiposity. Int J Obes (Lond) 2014, 38, 1290–1298, doi:10.1038/ijo.2014.119.

[125] Zhao, L. The Gut Microbiota and Obesity: From Correlation to Causality. Nat Rev Microbiol 2013, 11, 639–647, doi:10.1038/nrmicro3089.

[126] Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; Gordon, J.I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 2008, 3, 213–223, doi:10.1016/j.chom.2008.02.015.

[127] Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms Underlying the Resistance to Diet-Induced Obesity in Germ-Free Mice. Proc Natl Acad Sci U S A 2007, 104, 979–984, doi:10.1073/pnas.0605374104.

[128] Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.W.M.; Dallinga–Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R.; et al. Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome. Gastroenterology 2012, 143, 913-916.e7, doi:10.1053/j.gastro.2012.06.031.

[129] Murphy, R.; Tsai, P.; Jüllig, M.; Liu, A.; Plank, L.; Booth, M. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes Surg 2017, 27, 917–925, doi:10.1007/s11695-016-2399-2.

[130] Aron-Wisnewsky, J.; Prifti, E.; Belda, E.; Ichou, F.; Kayser, B.D.; Dao, M.C.; Verger, E.O.; Hedjazi, L.; Bouillot, J.-L.; Chevallier, J.-M.; et al. Major Microbiota Dysbiosis in Severe Obesity: Fate after Bariatric Surgery. Gut 2019, 68, 70–82, doi:10.1136/gutjnl-2018-316103.

[131] Dao, M.C.; Belda, E.; Prifti, E.; Everard, A.; Kayser, B.D.; Bouillot, J.-L.; Chevallier, J.-M.; Pons, N.; Le Chatelier, E.; Ehrlich, S.D.; et al. Akkermansia Muciniphila Abundance Is Lower in Severe Obesity, but Its Increased Level after Bariatric Surgery Is Not Associated with Metabolic Health Improvement. Am J Physiol Endocrinol Metab 2019, 317, E446–E459, doi:10.1152/ajpendo.00140.2019.

[132] Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-Talk between Akkermansia Muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proc Natl Acad Sci U S A 2013, 110, 9066–9071, doi:10.1073/pnas.1219451110.

[133] Demirci, M.; Tokman, H.B.; Uysal, H.K.; Demiryas, S.; Karakullukcu, A.; Saribas, S.; Cokugras, H.; Kocazeybek, B.S. Reduced Akkermansia Muciniphila and Faecalibacterium Prausnitzii Levels in the Gut Microbiota of Children with Allergic Asthma. Allergol Immunopathol (Madr) 2019, 47, 365–371, doi:10.1016/j.aller.2018.12.009.

[134] Michalovich, D.; Rodriguez-Perez, N.; Smolinska, S.; Pirozynski, M.; Mayhew, D.; Uddin, S.; Van Horn, S.; Sokolowska, M.; Altunbulakli, C.; Eljaszewicz, A.; et al. Obesity and Disease Severity Magnify Disturbed Microbiome-Immune Interactions in Asthma Patients. Nat Commun 2019, 10, 5711, doi:10.1038/s41467-019-13751-9.

[135] Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; et al. Dietary Intervention Impact on Gut Microbial Gene Richness. Nature 2013, 500, 585–588, doi:10.1038/nature12480.

[136] Damms-Machado, A.; Mitra, S.; Schollenberger, A.E.; Kramer, K.M.; Meile, T.; Königsrainer, A.; Huson, D.H.; Bischoff, S.C. Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption. Biomed Res Int 2015, 2015, 806248, doi:10.1155/2015/806248.

[137] Sotos, M.; Nadal, I.; Marti, A.; Martínez, A.; Martin-Matillas, M.; Campoy, C.; Puertollano, M.A.; Wärnberg, J.; Marcos, A.; Sanz, Y. Gut Microbes and Obesity in Adolescents. Proc. Nutr. Soc. 2008, 67, E20, doi:10.1017/S0029665108006290.

[138] Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Adv Nutr 2019, 10, S17–S30, doi:10.1093/advances/nmy078.

[139] Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int J Environ Res Public Health 2020, 17, 7618, doi:10.3390/ijerph17207618.

[140] Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. IJERPH 2021, 18, 12836, doi:10.3390/ijerph182312836.

[141] Man, S.M. Inflammasomes in the Gastrointestinal Tract: Infection, Cancer and Gut Microbiota Homeostasis. Nat Rev Gastroenterol Hepatol 2018, 15, 721–737, doi:10.1038/s41575-018-0054-1.

[142] Liao, Z.; Xiao, H.; Zhang, Y.; Tong, R.-S.; Zhang, L.-J.; Bian, Y.; He, X. IL-1β: A Key Modulator in Asthmatic Airway Smooth Muscle Hyper-Reactivity. Expert Rev Respir Med 2015, 9, 429–436, doi:10.1586/17476348.2015.1063422.

[143] Xu, M.-H.; Yuan, F.-L.; Wang, S.-J.; Xu, H.-Y.; Li, C.-W.; Tong, X. Association of Interleukin-18 and Asthma. Inflammation 2017, 40, 324–327, doi:10.1007/s10753-016-0467-3.

[144] Camilleri, M. Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut 2019, 68, 1516–1526, doi:10.1136/gutjnl-2019-318427.

[145] Dietary Patterns Reflecting Healthy Food Choices Are Associated with Lower Serum LPS Activity | Scientific Reports Available online: https://www.nature.com/articles/s41598-017-06885-7/ (accessed on 23 April 2023).

[146] Rohr, M.W.; Narasimhulu, C.A.; Rudeski-Rohr, T.A.; Parthasarathy, S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr 2020, 11, 77–91, doi:10.1093/advances/nmz061.

[147] Zhang, X.; Monnoye, M.; Mariadassou, M.; Beguet-Crespel, F.; Lapaque, N.; Heberden, C.; Douard, V. Glucose but Not Fructose Alters the Intestinal Paracellular Permeability in Association With Gut Inflammation and Dysbiosis in Mice. Front Immunol 2021, 12, 742584, doi:10.3389/fimmu.2021.742584.

[148] De la Fuente, M.; Franchi, L.; Araya, D.; Díaz-Jiménez, D.; Olivares, M.; Álvarez-Lobos, M.; Golenbock, D.; González, M.-J.; López-Kostner, F.; Quera, R.; et al. Escherichia Coli Isolates from Inflammatory Bowel Diseases Patients Survive in Macrophages and Activate NLRP3 Inflammasome. Int J Med Microbiol 2014, 304, 384–392, doi:10.1016/j.ijmm.2014.01.002.

[149] Garsin, D.A. Ethanolamine Utilization in Bacterial Pathogens: Roles and Regulation. Nat Rev Microbiol 2010, 8, 290–295, doi:10.1038/nrmicro2334.

[150] Spees, A.M.; Wangdi, T.; Lopez, C.A.; Kingsbury, D.D.; Xavier, M.N.; Winter, S.E.; Tsolis, R.M.; Bäumler, A.J. Streptomycin-Induced Inflammation Enhances Escherichia Coli Gut Colonization through Nitrate Respiration. mBio 2013, 4, e00430-13, doi:10.1128/mBio.00430-13.

[151] Hartman, A.L.; Lough, D.M.; Barupal, D.K.; Fiehn, O.; Fishbein, T.; Zasloff, M.; Eisen, J.A. Human Gut Microbiome Adopts an Alternative State Following Small Bowel Transplantation. Proc Natl Acad Sci U S A 2009, 106, 17187–17192, doi:10.1073/pnas.0904847106.

[152] Liu, Y.; Yu, X.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. The Role of MUC2 Mucin in Intestinal Homeostasis and the Impact of Dietary Components on MUC2 Expression. Int J Biol Macromol 2020, 164, 884–891, doi:10.1016/j.ijbiomac.2020.07.191.

[153] Huang, Y.-L.; Chassard, C.; Hausmann, M.; von Itzstein, M.; Hennet, T. Sialic Acid Catabolism Drives Intestinal Inflammation and Microbial Dysbiosis in Mice. Nat Commun 2015, 6, 8141, doi:10.1038/ncomms9141.