Frontiers in Medical Science Research, 2024, 6(8); doi: 10.25236/FMSR.2024.060808.
Li Shen1, Juanjuan Tan2, Ke Xia3,4, Zhiqiang Yan5, Feng Li1, Dan Zhang1, Lingli Zhan1
1Cardiology Department, The Third Hospital of Changsha, Changsha, 410035, China
2Shanxi Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Traditional Chinese Medicine, Xi'an, 712046, China
3Cardiology Department, Xiangya Hospital, Central South University, Changsha, 410078, China
4National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
5Central Laboratory of Fengxian Hospital Affiliated to Southern Medical University, Guangzhou, 201400, China
Epigallocatechin-3-gallate (EGCG) has beneficial effect on treat hypertention. The related mechanism of EGCG against hypertention has yet to be revealed. The purpose of this article is to predict the mechanism of action of EGCG in treatmenting of hypertension. The chief active components, relevant targets, and the target genes of EGCG were retrieved by the databases TCMSP, Swiss Target Prediction and Pharm Mapper database, and the related target of "essential hypertension" was collected in GeneCards, OMIM and TTD database. The common target of EGCG-essential hypertension was obtained through Venny 2.2.0 online website, and the protein-protein interaction network of common target was constructed and visualized using String database to screen out the core target of EGCG in the treatment of essential hypertension. Functional enrichment (GO) analysis was performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes to construct the network map of "EGCG-core target-major pathway-essential hypertension". Finally, the core target was tested for molecular docking with EGCG by Sybyl software. A total of 140 common targets of "EGCG-essential hypertension" were selected, and there were 23 core targets. The pathways involved cancer pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, etc. Molecular docking score indicated that EGCG was well bound to the core target protein. This research clarified the mechanism of EGCG in the treatment of hypertension systematically, providing new potential ideas and a theoretical foundation for further experimental and clinical research.
Epigallocatechin gallate (EGCG); essential hypertension; network pharmacology; protein-protein interaction network
Li Shen, Juanjuan Tan, Ke Xia, Zhiqiang Yan, Feng Li, Dan Zhang, Lingli Zhan. Network pharmacology and molecular docking verification to verify the potential mechanism of EGCG in the treatment of essential hypertension. Frontiers in Medical Science Research (2024), Vol. 6, Issue 8: 54-60. https://doi.org/10.25236/FMSR.2024.060808.
[1] Lin L, Zhang L, Li C, Gai Z, Li Y. Vitamin D and Vitamin D Receptor: New Insights in the Treatment of Hypertension. Curr Protein Pept Sci. 2019;20(10):984-95. 'doi:'10.2174/ 1389203720666190807 130504.
[2] Litwin M, Obrycki L, Niemirska A, Sarnecki J, Kulaga Z. Central systolic blood pressure and central pulse pressure predict left ventricular hypertrophy in hypertensive children. PEDIATR NEPHROL. 2019;34(4):703-12. 'doi:'10.1007/s00467-018-4136-7.
[3] Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. LANCET. 2005;365(9455):217-23. 'doi:'10.1016/S0140-6736(05)17741-1.
[4] Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291(7):844-50. 'doi:'10.1001/jama.291.7.844.
[5] Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA. 2017;317(2):165-82. 'doi:'10.1001/jama.2016.19043.
[6] Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. LANCET. 2017;390(10100):1345-422. 'doi:'10.1016/S0140-6736 (17)32366-8.
[7] Bin Z, Rodrigo M, Goodarz D, Leanne M, Christopher J et al. Gretchen AWorldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. LANCET. 2021; 398(10304): 957-80. 'doi:'10.1016/S0140-6736(21)01330-1.
[8] Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and Control of Hypertension: JACC Health Promotion Series. J AM COLL CARDIOL. 2018;72(11):1278-93. 'doi:'10.1016/j.jacc. 2018.07. 008.
[9] Kanlaya R, Thongboonkerd V. Protective Effects of Epigallocatechin-3-Gallate from Green Tea in Various Kidney Diseases. ADV NUTR. 2019;10(1):112-21. 'doi:'10.1093/advances/nmy077.
[10] Thangapandiyan S, Miltonprabu S. Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: Role of Nrf2/HO-1 signaling. Toxicol Rep. 2014;1:12-30. 'doi:'10.1016/j.toxrep.2014.01.002.
[11] Sahin K, Tuzcu M, Gencoglu H, Dogukan A, Timurkan M, Sahin N et al. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. LIFE SCI. 2010;87(7-8):240-5. 'doi:'10.1016/j.lfs.2010.06.014.
[12] Zhou P, Yu JF, Zhao CG, Sui FX, Teng X, Wu YB. Therapeutic potential of EGCG on acute renal damage in a rat model of obstructive nephropathy. MOL MED REP. 2013;7(4):1096-102. 'doi:'10.3892/mmr.2013.1296.
[13] Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J ETHNOPHARMACOL. 2018;210:296-310. 'doi:'10.1016/j.jep.2017.08.035.
[14] Yi QY, Qi J, Yu XJ, Li HB, Zhang Y, Su Q et al. Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension. CARDIOVASC TOXICOL. 2016;16(3):276-85. 'doi:'10.1007/s12012-015-9335-x.
[15] Yi QY, Li HB, Qi J, Yu XJ, Huo CJ, Li X et al. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. TOXICOL LETT. 2016;262:105-13. 'doi:'10.1016/j.toxlet. 2016. 09.010.
[16] Niu B, Wei S, Sun J, Zhao H, Wang B, Chen G. Deciphering the molecular mechanism of tetrandrine in inhibiting hepatocellular carcinoma and increasing sorafenib sensitivity by combining network pharmacology and experimental evaluation. PHARM BIOL. 2022;60(1):75-86. 'doi:'10.1080/ 13880209. 2021.2017468.
[17] Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110-20. 'doi:'10.1016/S1875-5364(13)60037-0.
[18] Ru J, Li P, Wang J, Zhou W, Li B, Huang C et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. 'doi:'10.1186/1758-2946-6-13.
[19] Heidari B, Avenatti E, Nasir K. Pharmacotherapy for Essential Hypertension: A Brief Review. Methodist Debakey Cardiovasc J. 2022;18(5):5-16. 'doi:'10.14797/mdcvj.1175.
[20] Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. NAT GENET. 2015;47(11):1282-93. 'doi:'10.1038/ng.3405.
[21] Liu Y, Zhao B, Mao G, Fang X, Liu Y, Huang Y et al. Epigallocatechin-3-O-gallate, a green tea polyphenol, induces expression of pim-1 kinase via PPARgamma in human vascular endothelial cells. CARDIOVASC TOXICOL. 2013;13(4):391-5. 'doi:'10.1007/s12012-013-9220-4.
[22] Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J AM COLL NUTR. 2007;26(4):373S-388S. 'doi:'10.1080/07315724.2007.10719626.
[23] Byun EB, Mi-SoYang, Kim JH, Song DS, Lee BS, Park JN et al. Epigallocatechin-3- gallate-mediated Tollip induction through the 67-kDa laminin receptor negatively regulating TLR4 signaling in endothelial cells. IMMUNOBIOLOGY. 2014;219(11):866-72. 'doi:' 10.1016/j.imbio. 2014.07.010.
[24] Jeong WS, Kim IW, Hu R, Kong AN. Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway. Pharm Res. 2004;21(4):661-70. 'doi:'10.1023/b:pham.0000022413.43212.cf.
[25] Yue TL, Gu JL, Wang C, Reith AD, Lee JC, Mirabile RC et al. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J BIOL CHEM. 2000;275(48):37895-901. 'doi:'10.1074/jbc.M007037200.
[26] Jin J, Ying H, Huang M, Du Q. Bioactive compounds in green tea leaves attenuate the injury of retinal ganglion RGC-5 cells induced by H2O2 and ultraviolet radiation. PAK J PHARM SCI. 2015; 28(6 Suppl):2267-72
[27] Granger JP. An emerging role for inflammatory cytokines in hypertension. Am J Physiol Heart Circ Physiol. 2006;290(3):H923-4. 'doi:'10.1152/ajpheart.01278.2005.
[28] Hao J, Kim CH, Ha TS, Ahn HY. Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J VET SCI. 2007;8(2):121-9. 'doi:'10.4142/jvs.2007.8.2.121.
[29] Mladenka P, Applova L, Patocka J, Costa VM, Remiao F, Pourova J et al. Comprehensive review of cardiovascular toxicity of drugs and related agents. MED RES REV. 2018;38(4):1332-403. 'doi:'10.1002/med.21476.
[30] Liu C, Arnold R, Henriques G, Djabali K. Inhibition of JAK-STAT Signaling with Baricitinib Reduces Inflammation and Improves Cellular Homeostasis in Progeria Cells. CELLS-BASEL. 2019;8(10). 'doi:'10.3390/cells8101276.
[31] Satou R, Gonzalez-Villalobos RA. JAK-STAT and the renin-angiotensin system: The role of the JAK-STAT pathway in blood pressure and intrarenal renin-angiotensin system regulation. JAKSTAT. 2012;1(4):250-6. 'doi:'10.4161/jkst.22729.