Welcome to Francis Academic Press

Academic Journal of Environment & Earth Science, 2024, 6(5); doi: 10.25236/AJEE.2024.060509.

A study of tropospheric multi-pollutants and their relationship dynamics in the Middle East

Author(s)

Tianzhen Ju1,2, Zhichao Lv1,2, Bingnan Li3, Lanzhi Wang1,2, Zhenrong Gu1,2

Corresponding Author:
Tianzhen Ju
Affiliation(s)

1College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, China

2The Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, Gansu Province, China

3News and Mass Communication Department, Shaanxi Normal University, Xi’an, 710062, China

Abstract

Due to the harsh natural environmental conditions in the Middle East and the fact that ozone is one of the top pollutants, research on ozone and its related pollutants has become more relevant in the countries concerned. This research is based on diverse datasets from the OMI instrument and utilizes backward trajectory analysis as well as Pearson spatial correlation to analyze the relationships between primary pollutant control zones during the warm seasons from 2010 to 2020 in the Middle East and meteorological factors. Research findings reveal the following.1. In terms of spatial distribution, ozone is primarily concentrated in the northwestern and central regions of the Middle East, while formaldehyde is predominantly found in the northern part of the region. Nitrogen dioxide, on the other hand, is mainly distributed in the northeastern portion of the Middle East. 2. In terms of time, ozone has shown a fluctuating upward trend since 11 years, with ozone considerably higher in summer than in winter; formaldehyde shows a higher winter than summer; and nitrogen dioxide shows a normal distribution. In order to facilitate environmental management, this study conducts an analysis of ozone-sensitive control areas within the research area at both annual and monthly scales. Results show that at the annual scale, ozone sensitivity is characterized by mixed or transitional control zones, while at the monthly scale, various control types are predominant.3. An analysis of the chemical and climatic processes involved in the formation of ozone showed a significant positive correlation between ozone and nitrogen dioxide, and an uncorrelated and weakly negative correlation with formaldehyde; ozone was positively correlated with temperature, and significantly negatively correlated with barometric pressure and relative humidity.4. Research on the HYSPLIT model and Weighted Potential Source Contribution Function for the elevated ozone regions in the Middle East indicates that the transport pathways of ozone pollution are primarily composed of two main components: the Persian Gulf and the Mediterranean.

Keywords

the Middle East, Tropospheric Ozone, OMI, Trend analysis

Cite This Paper

Tianzhen Ju, Zhichao Lv, Bingnan Li, Lanzhi Wang, Zhenrong Gu. A study of tropospheric multi-pollutants and their relationship dynamics in the Middle East. Academic Journal of Environment & Earth Science (2024), Vol. 6, Issue 5: 57-72. https://doi.org/10.25236/AJEE.2024.060509.

References

[1] Li Lei, He Yuqing, Lan Zijuan, et al. Analysis of Environmental Meteorological Characteristics of Ozone Pollution in Shenzhen [J]. Journal of Environmental Science, 2023, 43 (01): 109-118. DOI: 10.13671/j.hjkxxb. 2022.0408

[2] Szep, R., Keresztes, R., Tonk, S., Korodi, A. & Craciun, M.E. (2017). The Examination of the Effects of Relative Humidity on the Changes of Tropospheric Ozone Concentrations in the Ciuc Basin, Romania. Revista de Chimie, 68(4), 642-645. https://doi.org/10.37358/RC.17.4.5522

[3] Cristofanelli, P., Bracci, A., Sprenger, M., Marinoni, A., Bonafè, U., Calzolari, F., Duchi, R., Laj, P., Pichon, J. M., Roccato, F., Venzac, H., Vuillermoz, E., & Bonasoni, P. (2010). Tropospheric ozone variations at the Nepal Climate Observatory-Pyramid (Himalayas, 5079 m a.s.l.) and influence of deep stratospheric intrusion events. Atmospheric Chemistry and Physics, 10(14), 6537-6549. https://doi.org/10.5194/acp-10-6537-2010 

[4] Ziemke, J. R., Oman, L. D., Strode, S. A., Douglass, A. R., Olsen, M. A., McPeters, R. D., Bhartia, P. K., Froidevaux, L., Labow, G. J., Witte, J. C., Thompson, A. M., Haffner, D. P., Kramarova, N. A., Frith, S. M., Huang, L.-K., Jaross, G. R., Seftor, C. J., Deland, M. T., & Taylor, S. L. (2019). Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmospheric Chemistry and Physics, 19(5), 3257-3269. https://doi.org/10.5194/acp-19-3257-2019 

[5] Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., & Zittis, G. (2016). Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137(1-2), 245-260. https://doi.org/10.1007/s10584-016-1665-6 

[6] Tadic, I., Crowley, J. N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Martinez, M., Parchatka, U., Paris, J.-D., Pozzer, A., Rohloff, R., Schuladen, J., Shenolikar, J., Tauer, S., Lelieveld, J., & Fischer, H. (2020). Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula. Atmospheric Chemistry and Physics, 20(11), 6769-6787. https://doi.org/10.5194/acp-20-6769-2020 

[7] Nadeem A, Tariq S, Haq ZU. Long-term quantification of springtime aerosols over Saudi Arabia using multi-satellite remotely sensed data. Environ Sci Pollut Res Int. 2024 Jun; 31(29):42023-42033. doi: 10.1007/s11356-024-33871-0. Epub 2024 Jun 10. PMID: 38856855.

[8] Al Suwaidi, A., Ali, T., Atabay, S. et al. Particulate matter (pm10) monitoring in the United Arab Emirates using a satellite remote sensing based model. Discov Environ 2, 50 (2024). https://doi.org/10.1007/s44274-024-00068-8

[9] Jiang, Z., Miyazaki, K., Worden, J. R., Liu, J. J., Jones, D. B. A., & Henze, D. K. (2016). Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East. Atmospheric Chemistry and Physics, 16(10), 6537-6546. https://doi.org/10.5194/acp-16-6537-2016 

[10] Badaro-Saliba, N., Adjizian-Gerard, J., Zaarour, R., Abboud, M., Farah, W., Saliba, A. N., & Shihadeh, A. (2013). A geostatistical approach for assessing population exposure to NO2 in a complex urban area (Beirut, Lebanon). Stochastic Environmental Research and Risk Assessment, 28(3), 467-474. https://doi.org/10.1007/s00477-013-0765-3 

[11] Zohdirad, H., Montazeri Namin, M., Ashrafi, K., Aksoyoglu, S., & Prevot, A. S. H. (2022). Temporal variations, regional contribution, and cluster analyses of ozone and NO(x) in a middle eastern megacity during summertime over 2017-2019. Environ Sci Pollut Res Int, 29(11), 16233-16249. https://doi.org/10.1007/s11356-021-14923-1 

[12] Daniel A. Jaffe, Owen R. Cooper, Arlene M. Fiore, Barron H. Henderson, Gail S. Tonnesen, Armistead G. Russell, Daven K. Henze, Andrew O. Langford, Meiyun Lin, Tom Moore; Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa: Science of the Anthropocene 1 January 2018; 6 56. doi: https://doi.org/10.1525/elementa.309

[13] Abbasi-Kangevari, M., Malekpour, M. R., Masinaei, M., Moghaddam, S. S., Ghamari, S. H., Abbasi-Kangevari, Z., Rezaei, N., Rezaei, N., Mokdad, A. H., Naghavi, M., Larijani, B., Farzadfar, F., Murray, C. J. L., Africa, G. B. D. N., & the Middle East Air Pollution, C. (2023). Effect of air pollution on disease burden, mortality, and life expectancy in North Africa and the Middle East: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Planet Health, 7(5), e358-e369. https://doi.org/10.1016/S2542-5196(23)00053-0 

[14] Barkley, M. P., González Abad, G., Kurosu, T. P., Spurr, R., Torbatian, S., & Lerot, C. (2017). OMI air-quality monitoring over the Middle East. Atmospheric Chemistry and Physics, 17(7), 4687-4709. https://doi.org/10.5194/acp-17-4687-2017 

[15] Wang, W., van der A, R., Ding, J., van Weele, M., & Cheng, T. (2021). Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 21(9), 7253-7269. https://doi.org/10.5194/acp-21-7253-2021  

[16] Peng, S., Ju, T., Liang, Z., Li, M., Liu, S., & Pan, B. (2022). Analysis of atmospheric ozone in Fenwei Plain based on remote sensing monitoring. Environ Monit Assess, 194(6), 412. https://doi.org/10.1007/s10661-022-10082-z 

[17] Ting, M., Shaw, T. A., Seager, R., & Simpson, I. R. (2015). Mediterranean Summer Climate and the Importance of Middle East Topography*. Journal of Climate, 28(5), 1977-1996. https://doi.org/10.1175/jcli-d-14-00298.1 

[18] Vrekoussis, M., Pikridas, M., Rousogenous, C., Christodoulou, A., Desservettaz, M., Sciare, J., Richter, A., Bougoudis, I., Savvides, C., & Papadopoulos, C. (2022). Local and regional air pollution characteristics in Cyprus: A long-term trace gases observations analysis. Sci Total Environ, 845, 157315. https://doi.org/10.1016/j.scitotenv.2022.157315 

[19] Ehsan, M. A., Nicolì, D., Kucharski, F., Almazroui, M., Tippett, M. K., Bellucci, A., Ruggieri, P., & Kang, I.-S. (2020). Atlantic Ocean influence on Middle East summer surface air temperature. npj Climate and Atmospheric Science, 3(1). https://doi.org/10.1038/s41612-020-0109-1 

[20] Osipov, S., Chowdhury, S., Crowley, J. N., Tadic, I., Drewnick, F., Borrmann, S., Eger, P., Fachinger, F., Fischer, H., Predybaylo, E., Fnais, M., Harder, H., Pikridas, M., Vouterakos, P., Pozzer, A., Sciare, J., Ukhov, A., Stenchikov, G. L., Williams, J., & Lelieveld, J. (2022). Severe atmospheric pollution in the Middle East is attributable to anthropogenic sources. Communications Earth & Environment, 3(1). https://doi.org/10.1038/s43247-022-00514-6 

[21] Kalbarczyk, R., Kalbarczyk, E., Niedźwiecka-Filipiak, I., & Serafin, L. (2015). Ozone Concentration at Ground Level Depending on the Content of NOx and Meteorological Conditions. Ecological Chemistry and Engineering S, 22(4), 527-541. https://doi.org/10.1515/eces-2015-0031 

[22] Xiong, Y., & Du, K. (2020). Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC. Sci Total Environ, 721, 137698. https://doi.org/10.1016/j.scitotenv.2020.137698 

[23] Ghimire, S., Lebo, Z. J., Murphy, S., Rahimi, S., & Tran, T. (2023). Simulations of winter ozone in the Upper Green River basin, Wyoming, using WRF-Chem. Atmospheric Chemistry and Physics, 23(16), 9413-9438. https://doi.org/10.5194/acp-23-9413-2023 

[24] Spohn, T. K., & Rappenglück, B. (2015). Tracking potential sources of peak ozone concentrations in the upper troposphere over the Arabian Gulf region. Atmospheric Environment, 101, 257-269. https://doi.org/10.1016/j.atmosenv.2014.11.026 

[25] Waha, K., Krummenauer, L., Adams, S., Aich, V., Baarsch, F., Coumou, D., Fader, M., Hoff, H., Jobbins, G., Marcus, R., Mengel, M., Otto, I. M., Perrette, M., Rocha, M., Robinson, A., & Schleussner, C.-F. (2017). Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Regional Environmental Change, 17(6), 1623-1638. https://doi.org/10.1007/s10113-017-1144-2 

[26] Tazeem, S. B., Ahmed, N., & Hussain, A. (2022). Spatio-temporal co-variability of air pollutants and meteorological variables over Haqel and Jeddah, Saudi Arabia. AtmÓsfera. https://doi.org/10.20937/atm.53100 

[27] Saqer, R., Issa, S., & Saleous, N. (2024). Spatio-temporal characterization of PM10 concentration across Abu Dhabi Emirate (UAE). Heliyon, 10(12), e32812. https://doi.org/ 10.1016/j. heliyon.2024.e32812 

[28] Zhao, Z., Zhou, Z., Russo, A., Du, H., Xiang, J., Zhang, J., & Zhou, C. (2021). Impact of meteorological conditions at multiple scales on ozone concentration in the Yangtze River Delta. Environ Sci Pollut Res Int, 28(44), 62991-63007. https://doi.org/10.1007/s11356-021-15160-2 

[29] Li, M., Yu, S., Chen, X., Li, Z., Zhang, Y., Wang, L., Liu, W., Li, P., Lichtfouse, E., Rosenfeld, D., & Seinfeld, J. H. (2021). Large scale control of surface ozone by relative humidity observed during warm seasons in China. Environmental Chemistry Letters, 19(6), 3981-3989. https://doi.org/10.1007/s10311-021-01265-0 

[30] Kalabokas, P., Hjorth, J., Foret, G., Dufour, G., Eremenko, M., Siour, G., Cuesta, J., & Beekmann, M. (2017). An investigation on the origin of regional springtime ozone episodes in the western Mediterranean. Atmospheric Chemistry and Physics, 17(6), 3905-3928. https://doi.org/10.5194/acp-17-3905-2017