Academic Journal of Engineering and Technology Science, 2024, 7(6); doi: 10.25236/AJETS.2024.070602.
Tianlong Bai, Danqing Long
Hunan University of Science and Technology, Xiangtan, China
Graphene-based materials have the advantages of ultra-high carrier mobility, broad spectral absorption and tunable bandgap, which enable efficient optical modulation and optical signal processing and can significantly improve the performance and stability of lasers. This paper summarises the research progress of mid-infrared fibre lasers based on graphene-like heterojunction materials. The basic principles and key technologies of mid-infrared fibre lasers, the properties and advantages of graphene-like heterojunction materials, the latest research results, and the future research directions and challenges are presented.
Two-dimensional materials; Heterojunction; Saturable absorber; Mid-IR fibre lasers
Tianlong Bai, Danqing Long. Mid-infrared fiber laser based on graphene-like heterojunction modulation. Academic Journal of Engineering and Technology Science (2024) Vol. 7, Issue 6: 7-14. https://doi.org/10.25236/AJETS.2024.070602.
[1] Wang, Z., Zhang, B., Liu, J., Song, Y., & Zhang, H. (2020). Recent developments in mid-infrared fiber lasers: Status and challenges. Optics & Laser Technology, 132, 106497.
[2] Hou, S.D, Yan, P.G., & Ruan, S.C. (2021). Research progress of mid-infrared ultrafast fiber lasers. High Power Laser & Particle Beams.
[3] Gattass, R. R., & Mazur, E. (2008). Femtosecond laser micromachining in transparent materials. Nature photonics, 2(4), 219-225.
[4] Mandon, J., Guelachvili, G., & Picqué, N. (2009). Fourier transform spectroscopy with a laser frequency comb. Nature Photonics, 3(2), 99-102.
[5] Hudson, D. D., Antipov, S., Li, L., Alamgir, I., Hu, T., Amraoui, M. E., ... & Fuerbach, A. (2017). Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4(10), 1163-1166.
[6] Darren D. Hudson,Stephen A. Dekker,Eric C. Magi,Alexander C. Judge,Stuart D. Jackson,Enbang Li... & Benjamin J. Eggleton.(2011).Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy.Optics Letters(7),1122-1124.
[7] Vodopyanov, K. L., Muraviev, A. V., Loparo, Z., Vasilyev, S., & Mirov, S. B. (2018). Massively parallel sensing of trace molecules and their isotopologues with broadband mid-IR frequency combs produced via optical subharmonic generation. In Micro-and Nanotechnology Sensors, Systems, and Applications X (Vol. 10639, pp. 420-424). SPIE.
[8] Dausinger, F., Lichtner, F., & Lubatschowski, H. (Eds.). (2004). Femtosecond technology for technical and medical applications (Vol. 96). Springer Science & Business Media.
[9] Gretzinger, T., Fernandez, T. T., & Fuerbach, A. (2023). Towards the development of mid-infrared all-integrated fiber laser systems for drone-based remote sensing. In The European Conference on Lasers and Electro-Optics (p. cj_6_1). Optica Publishing Group.
[10] Zhang, D.J. (2015). Preparation, defect control and optical and electrical properties of graphene films (Doctoral dissertation, National University of Defense Technology).
[11] Li Z.W. (2021). Research on the polarization properties of graphene and its optical applications (Master's thesis, Shandong University of Technology).
[12] Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature photonics, 4(9), 611-622.
[13] Cusati, T., Fiori, G., Gahoi, A., Passi, V., Lemme, M. C., Fortunelli, A., & Iannaccone, G. (2017). Electrical properties of graphene-metal contacts. Scientific reports, 7(1), 5109.
[14] Liu, C., Li, H., Deng, G., Lan, C., Li, C., & Liu, Y. (2016). Femtosecond Er-doped fiber laser using a graphene/MoS 2 heterostructure saturable absorber. In 2016 Asia Communications and Photonics Conference (ACP) (pp. 1-3). IEEE.
[15] Zollner, K., & Fabian, J. (2021). Heterostructures of graphene and topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 258(1), 2000081.
[16] Liu, S., Li, Z., Ge, Y., Wang, H., Yue, R., Jiang, X., ... & Zhang, H. (2017). Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photonics Research, 5(6), 662-668.
[17] Bharathan, G., Fernandez, T. T., Ams, M., Carrée, J. Y., Poulain, S., Poulain, M., & Fuerbach, A. (2020). Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths beyond 4 µm. Optics letters, 45(15), 4316-4319.
[18] Fedorov, V. A., Babitsyna, A. A., & Emel'yanova, T. A. (2001). Glass Formation in the ZrF4–LaF3–BaF2–NaF System. Glass physics and chemistry, 27, 512-519.
[19] Selden, A. (1967). Pulse transmission through a saturable absorber. British Journal of Applied Physics, 18(6), 743.
[20] Matsuda, Y., Tahir-Kheli, J., & Goddard III, W. A. (2010). Definitive band gaps for single-wall carbon nanotubes. The Journal of Physical Chemistry Letters, 1(19), 2946-2950.
[21] Wang, S., Yu, H., Zhang, H., Wang, A., Zhao, M., Chen, Y., ... & Wang, J. (2014). Broadband few-layer MoS2 saturable absorbers. Advanced Materials (Deerfield Beach, Fla.), 26(21), 3538-3544.
[22] Xu, Y., Shi, Z., Shi, X., Zhang, K., & Zhang, H. (2019). Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale, 11(31), 14491-14527.
[23] Zhang, M., Kelleher, E. J. R., Torrisi, F., Sun, Z., Hasan, T., Popa, D., ... & Taylor, J. R. (2012). Tm-doped fiber laser mode-locked by graphene-polymer composite. Optics express, 20(22), 25077-25084.
[24] Turchinovich, D., Liu, X., & Lægsgaard, J. (2008). Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber. Optics Express, 16(18), 14004-14014.
[25] Sotor, J., Bogusławski, J., Martynkien, T., Mergo, P., Krajewska, A., Przewłoka, A., ... & SoboŃ, G. (2017). All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Optics Letters, 42(8), 1592-1595.
[26] Chu, Q.H. (2017). Progress in mid-infrared fiber laser technology. Telecommunication Technology Research, (2), 46-53.
[27] Zhu, G., Zhu, X., Wang, F., Xu, S., Li, Y., Guo, X., ... & Peyghambarian, N. (2015). Graphene mode-locked fiber laser at 2.8$\mu\text {m} $. IEEE Photonics Technology Letters, 28(1), 7-10.
[28] Xu, H., Wan, X., Ruan, Q., Yang, R., Du, T., Chen, N., ... & Luo, Z. (2017). Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments. IEEE Journal of Selected Topics in Quantum Electronics, 24(3), 1-9.
[29] Qin, Z., Xie, G., Zhao, C., Wen, S., Yuan, P., & Qian, L. (2015). Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Optics Letters, 41(1), 56-59.
[30] Sotor, J., Sobon, G., Kowalczyk, M., Macherzynski, W., Paletko, P., & Abramski, K. M. (2015). Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Optics letters, 40(16), 3885-3888.
[31] Qin, Z., Hai, T., Xie, G., Ma, J., Yuan, P., Qian, L., ... & Shen, D. (2018). Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength. Optics Express, 26(7), 8224-8231.
[32] Yin, K., Jiang, T., Zheng, X., Yu, H., Cheng, X., & Hou, J. (2015). Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber. arXiv preprint arXiv:1505.06322.
[33] Wei, C., Luo, H., Zhang, H., Li, C., Xie, J., Li, J., & Liu, Y. (2016). Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber. Laser physics letters, 13(10), 105108.
[34] Liu, C., Li, H., Deng, G., Lan, C., Li, C., & Liu, Y. (2016). Femtosecond Er-doped fiber laser using a graphene/MoS 2 heterostructure saturable absorber. In 2016 Asia Communications and Photonics Conference (ACP) (pp. 1-3). IEEE.
[35] Wang, X., Xu, J., Sun, Y., Feng, W., You, Z., Sun, D., & Tu, C. (2017). 2 and 3 µm passively Q-switched bulk pulse laser based on a MoS2/graphene heterojunction. Laser Physics Letters, 15(1), 015801.
[36] Tang, P., Tao, Y., Mao, Y., Wu, M., Huang, Z., Liang, S., ... & Zhao, C. (2018). Graphene/MoS 2 heterostructure: a robust mid-infrared optical modulator for Er 3+-doped ZBLAN fiber laser. Chinese Optics Letters, 16(2), 020012.
[37] Cao, R., Fan, S., Yin, P., Ma, C., Zeng, Y., Wang, H., ... & Zhang, H. (2022). Mid-infrared optoelectronic devices based on two-dimensional materials beyond graphene: status and trends. Nanomaterials, 12(13), 2260.
[38] Li, Z., Ruan, B., Zhu, J., Guo, J., Dai, X., & Xiang, Y. (2019). Tunable mid-infrared perfect absorber based on the critical coupling of graphene and black phosphorus nanoribbons. Results in Physics, 15, 102677.
[39] Feng, N., Wang, X., Zhang, Y., Hong, B., Yang, L., Huang, Z., & Joines, W. T. (2023). Near-unity broadband infrared absorption in a graphene-black phosphorus bimodal triple-layer structure. Optical Materials Express, 13(6), 1535-1546.
[40] Wang, Z., Mu, H., Yuan, J., Zhao, C., Bao, Q., & Zhang, H. (2016). Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23(1), 195-199.
[41] Wang, Z., Mu, H., Zhao, C., Bao, Q., & Zhang, H. (2016). Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene–Bi2Te3 heterostructure saturable absorber-based fiber laser. Optical Engineering, 55(8), 081314.
[42] Mu, H.R., Yuan, J., Li, S.J., & Bao, Q.L. (2016). Experimental study of graphene-bismuth telluride (Bi2Te3) heterojunction erbium-doped fiber pulse laser. Science paper Online.