Academic Journal of Materials & Chemistry, 2024, 5(3); doi: 10.25236/AJMC.2024.050313.
Fei Li, Xinru Liu, Xiyan Zhu
Hunan University of Science and Technology, Xiangtan, China
Upconversion nanoparticles (UCNPs) have a wide range of applications in biomedicine due to their unique optical properties, such as resistance to autofluorescence, deep tissue penetration ability, good biocompatibility, multifunctional integration ability, and low toxicity. The applications of UCNPs in biology cover a wide range of fields from diagnostics to therapy. compared with traditional fluorescent materials, UCNPs show unique advantages and great potential in biosensing, bioimaging, drug delivery, PTT/PDT, multimodal diagnostics, cell labeling, and molecular probes. With the further development in this field, the applications prospects of UCNPs in biomedicine will be even broader. This article reviews the applications and cutting-edge technologies of UCNPs in current popular biological fields such as biosensing, bioimaging, and drug delivery, and summarizes the prospects and challenges of UCNPs in the future of biomedicine.
UCNPs, Biological application, Bioimaging, Drug delivery, Disease treatment
Fei Li, Xinru Liu, Xiyan Zhu. Recent advances in UCNPs fluorescent nanomaterials as platforms for biological applications. Academic Journal of Materials & Chemistry (2024) Vol. 5, Issue 3: 85-93. https://doi.org/10.25236/AJMC.2024.050313.
[1] Zhang, X., Huang, Y., & Gong, M. (2017). Dual-emitting Ce3+, Tb3+ co-doped LaOBr phosphor: luminescence, energy transfer and ratiometric temperature sensing. Chemical Engineering Journal, 307, 291-299.
[2] Jin, B., Li, S., Zhang, C., Ma, C., Hu, J., Wang, J., & Li, Z. (2024). Systematic optimization of UCNPs-LFA for Helicobacter pylori nucleic acid detection at point-of-care. Microchimica Acta, 191(11), 650.
[3] Schroter, A., & Hirsch, T. (2024). Control of Luminescence and Interfacial Properties as Perspective for Upconversion Nanoparticles. Small, 20(14), 2306042.
[4] Wolfbeis, O. S. (2015). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 44(14), 4743-4768.
[5] Xu, J., Gulzar, A., Yang, P., Bi, H., Yang, D., Gai, S., ... & Jin, D. (2019). Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coordination chemistry reviews, 381, 104-134.
[6] Wen, S., Zhou, J., Zheng, K., Bednarkiewicz, A., Liu, X., & Jin, D. (2018). Advances in highly doped upconversion nanoparticles. Nature communications, 9(1), 2415.
[7] Drees, C., Raj, A. N., Kurre, R., Busch, K. B., Haase, M., & Piehler, J. (2016). Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angewandte Chemie International Edition, 55(38), 11668-11672.
[8] Das, A., Bae, K., & Park, W. (2020). Enhancement of upconversion luminescence using photonic nanostructures. Nanophotonics, 9(6), 1359-1371.
[9] Wen, S., Zhou, J., Zheng, K., Bednarkiewicz, A., Liu, X., & Jin, D. (2018). Advances in highly doped upconversion nanoparticles. Nature communications, 9(1), 2415.
[10] Tian, B., Fernandez-Bravo, A., Najafiaghdam, H., Torquato, N. A., Altoe, M. V. P., Teitelboim, A., ... & Cohen, B. E. (2018). Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nature communications, 9(1), 3082.
[11] Zhou, J., Liu, Z., & Li, F. (2012). Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews, 41(3), 1323-1349.
[12] Gu, Z., Yan, L., Tian, G., Li, S., Chai, Z., & Zhao, Y. (2013). Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Advanced Materials, 25(28), 3758-3779.
[13] Wang, D., Liu, B., Quan, Z., Li, C., Hou, Z., Xing, B., & Lin, J. (2017). New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. Journal of Materials Chemistry B, 5(12), 2209-2230.
[14] Hong G,Y. Rare earth luminescent materials: foundation and application[M]. Science Press, 2011.
[15] Auzel, F. E. (1973). Materials and devices using double-pumped-phosphors with energy transfer. Proceedings of the IEEE, 61(6), 758-786.
[16] Abbasi-Moayed, S., Bigdeli, A., & Hormozi-Nezhad, M. R. (2020). Application of NaYF4: Yb/Er/Tm UCNPs in array-based sensing of neurotransmitters: from a single particle to a multichannel sensor array. ACS Applied Materials & Interfaces, 12(47), 52976-52982.
[17] Lakshmanan, A. K., Chakraborty, S., Roy, B., & Senthilselvan, J. (2024). Effect of Yb 3+ concentration on the upconversion emission properties of sub 10 nm RbY 2 F 7: Yb, Er nanoparticles. Physical Chemistry Chemical Physics, 26(38), 25240-25249.
[18] Wang, Y., Wei, Z., Luo, X., Wan, Q., Qiu, R., & Wang, S. (2019). An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta, 195, 33-39.
[19] Yu, D., Zha, Z., Tang, S., Qiu, Y., & Liu, D. (2022). Modification-free fluorescent biosensor for CEA based on polydopamine-coated upconversion nanoparticles. Journal of Fluorescence, 32(4), 1289-1297.
[20] Pini, F., Francés-Soriano, L., Andrigo, V., Natile, M. M., & Hildebrandt, N. (2023). Optimizing upconversion nanoparticles for FRET biosensing. ACS nano, 17(5), 4971-4984.
[21] Li, X., Liu, L., Fu, Y., Chen, H., Abualrejal, M. M., Zhang, H., ... & Zhang, H. (2020). Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors. Acta biomaterialia, 104, 167-175.
[22] Demina, P. A., Sholina, N. V., Akasov, R. A., Khochenkov, D. A., Arkharova, N. A., Nechaev, A. V., ... & Generalova, A. N. (2020). A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles. Biomaterials Science, 8(16), 4570-4580.
[23] Sun, B., Mullapudi, S. S., Zhang, Y., & Neoh, K. G. (2022). Glycosylated phospholipid-coated upconversion nanoparticles for bioimaging of non-muscle invasive bladder cancers. Microchimica Acta, 189(9), 349.
[24] Li, Y., Xie, Y., Zhang, Y., Zhao, H., Ju, H., & Liu, Y. (2022). DNA nanomachine activation and Zn2+ imaging in living cells with single NIR irradiation. Analytica Chimica Acta, 1221, 340149.
[25] Fedoryshin, L. L., Tavares, A. J., Petryayeva, E., Doughan, S., & Krull, U. J. (2014). Near-infrared-triggered anticancer drug release from upconverting nanoparticles. ACS applied materials & interfaces, 6(16), 13600-13606.
[26] Kim, H. J., Cho, H. B., Kim, H. R., Lee, S., Park, J. I., & Park, K. H. (2024). Upconverting-photon quenching-mediated perforation influx as an intracellular delivery method using posAuNP@ UCNPs nanocomposites for osteoarthritis treatment. Nano Convergence, 11(1), 1.
[27] Tam, V., Picchetti, P., Liu, Y., Skripka, A., Carofiglio, M., Tamboia, G., ... & Cerruti, M. (2024). Upconverting Nanoparticles Coated with Light-Breakable Mesoporous Silica for NIR-Triggered Release of Hydrophobic Molecules. ACS Applied Materials & Interfaces.
[28] Wang, J., Shangguan, P., Lin, M., Fu, L., Liu, Y., Han, L., ... & Bai, F. (2023). Dual-Site Förster Resonance Energy Transfer Route of Upconversion Nanoparticles-Based Brain-Targeted Nanotheranostic Boosts the Near-Infrared Phototherapy of Glioma. ACS nano, 17(17), 16840-16853.
[29] Sun, Y., Liu, Q., Peng, J., Feng, W., Zhang, Y., Yang, P., & Li, F. (2013). Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Biomaterials, 34(9), 2289-2295.
[30] Ma, Y., Ji, Y., You, M., Wang, S., Dong, Y., Jin, G., ... & Xu, F. (2016). Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4: Yb3+, Er3+ upconversion nanoparticles. Acta biomaterialia, 42, 199-208.
[31] Yang, L., Zhang, K., Bi, S., & Zhu, J. J. (2019). Dual-acceptor-based upconversion luminescence nanosensor with enhanced quenching efficiency for in situ imaging and quantification of microRNA in living cells. ACS applied materials & interfaces, 11(42), 38459-38466.
[32] Polikarpov, D., Liang, L., Care, A., Sunna, A., Campbell, D., Walsh, B., ... & Guryev, E. (2019). Functionalized upconversion nanoparticles for targeted labelling of bladder cancer cells. Biomolecules, 9(12), 820.
[33] Chen, L., Zhong, Y., Li, Y. S., Zhuang, H., Li, X., Liu, S. P., ... & Gao, F. (2023). A Novel and Rapid Smear Cytomorphology Detection Strategy Based on Upconversion Nanoparticles Immunolabeling Integrated with Wright’s Staining for Accurate Diagnosis of Leukemia. International Journal of Nanomedicine, 5213-5224.
[34] Fang, H., Li, M., Liu, Q., Gai, Y., Yuan, L., Wang, S., ... & Lan, X. (2020). Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer. Nano-micro letters, 12, 1-14.
[35] Zhang, M., Zuo, M., Wang, C., Li, Z., Cheng, Q., Huang, J., ... & Liu, Z. (2020). Monitoring neuroinflammation with an HOCl-activatable and blood–brain barrier permeable upconversion nanoprobe. Analytical chemistry, 92(7), 5569-5576.
[36] F. Shida, J., Ma, K., Toll, H. W., Salinas, O., Ma, X., & Peng, C. S. (2024). Multicolor Long-Term Single-Particle Tracking Using 10 nm Upconverting Nanoparticles. Nano Letters, 24(14), 4194-4201.
[37] Zhao, Q., Du, P., Wang, X., Huang, M., Sun, L. D., Wang, T., & Wang, Z. (2021). Upconversion fluorescence resonance energy transfer aptasensors for H5N1 influenza virus detection. ACS omega, 6(23), 15236-15245.