Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2025, 6(1); doi: 10.25236/AJMC.2025.060104.

Upconversion Luminescence Modulation Based on Sandwich Structure with Interlayer Doping

Author(s)

Xinru Liu, Xiyan Zhu, Pei Jiang, Fei Li

Corresponding Author:
Fei Li
Affiliation(s)

Hunan University of Science and Technology, Xiangtan, China

Abstract

Upconversion nanoparticles (UCNPs) as energy donors in luminescent resonance energy transfer (LRET) technology have shown broad prospects in various applications. To enhance the efficiency of LRET, this study designed and synthesized a sandwich-structured NaYF4@NaYF4:Yb³+/Er3+@NaYF4 upconversion nanoparticle. This core-shell structure places the luminescent ions Er3+ in the inner shell, close to the nanoparticle surface, maintaining good proximity to the external energy acceptor. By adjusting the doping concentration in the intermediate layer, we successfully optimized the upconversion luminescence properties, regulating the emission wavelength and intensity. The results show that the luminescence efficiency of the sandwich-structured nanoparticles is significantly superior to that of the single NaYF4: Yb3+/Er3+core nanoparticles, effectively improving their signal-to-noise ratio in sensor applications. This study provides stronger support for the application of UCNP-based LRET technology in temperature sensor design.

Keywords

Up-conversion luminescence; sandwich structure; temperature sensitivity

Cite This Paper

Xinru Liu, Xiyan Zhu, Pei Jiang, Fei Li. Upconversion Luminescence Modulation Based on Sandwich Structure with Interlayer Doping. Academic Journal of Materials & Chemistry (2025), Vol. 6, Issue 1: 36-43. https://doi.org/10.25236/AJMC.2025.060104.

References

[1] Vennerberg, D., & Lin, Z. (2011). Upconversion nanocrystals: synthesis, properties, assembly and applications. Science of Advanced Materials, 3(1), 26-40. 

[2] Tanaka, R., Kitagawa, Y., & Shinozaki, K. (2023). Effect of adding Er3+ on the precipitated crystalline phase of SrF2–ZnO–B2O3 glass and upconversion luminescence. Optical Materials: X, 20, 100268.

[3] Gocmen, M. S., & Dulda, A. (2024). Effect of Pr3+ concentration in luminescence properties & upconversion mechanism of triple doped NaYF4: Yb3+, Er3+, Pr3+. Methods and Applications in Fluorescence, 12(2), 025006.

[4] Mettenbrink, E. M., Yang, W., & Wilhelm, S. (2022). Bioimaging with upconversion nanoparticles. Advanced photonics research, 3(12), 2200098.

[5] Li, Y., Chen, C., Liu, F., & Liu, J. (2022). Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Microchimica Acta, 189(3), 109.

[6] Sun, Q. C., Ding, Y. C., Sagar, D. M., & Nagpal, P. (2017). Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 92(4), 281-316.

[7] Mader, H. S., Kele, P., Saleh, S. M., & Wolfbeis, O. S. (2010). Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Current opinion in chemical biology, 14(5), 582-596.

[8] Lin, M., Cheng, S., Wu, X., Zhan, S., & Liu, Y. (2021). Optical temperature sensing based on upconversion nanoparticles with enhanced sensitivity via dielectric superlensing modulation. Journal of Materials Science, 56, 10438-10448.

[9] Gao, W., Han, S., Wang, B., Sun, Z., Lu, Y., Han, Q., ... & Dong, J. (2022). Single-layer gold nanoparticle film enhances the upconversion luminescence of a single NaYbF4:2%Er3+ microdisk. Journal of Alloys and Compounds, 900, 163493.

[10] Lu, D., Retama, J. R., Marin, R., Marqués, M. I., Calderón, O. G., Melle, S., ... & Jaque, D. (2022). Thermoresponsive polymeric nanolenses magnify the thermal sensitivity of single upconverting nanoparticles. Small, 18(34), 2202452.

[11] Back, M., Ueda, J., Brik, M. G., & Tanabe, S. (2020). Pushing the limit of Boltzmann distribution in Cr3+-doped CaHfO3 for cryogenic thermometry. ACS applied materials & interfaces, 12(34), 38325-38332.

[12] Mykhaylyk, V., Kraus, H., Zhydachevskyy, Y., Tsiumra, V., Luchechko, A., Wagner, A., & Suchocki, A. (2020). Multimodal non-contact luminescence thermometry with Cr-doped oxides. Sensors, 20(18), 5259.

[13] Back, M., Casagrande, E., Brondin, C. A., Ambrosi, E., Cristofori, D., Ueda, J., ... & Riello, P. (2020). Lanthanide-doped Bi2SiO5@ SiO2 core–shell upconverting nanoparticles for stable ratiometric optical thermometry. ACS Applied Nano Materials, 3(3), 2594-2604.

[14] Liu, H., Kulkarni, A., Kostiv, U., Sandberg, E., Lakshmanan, A., Sotiriou, G. A., & Widengren, J. (2024). Interplay between a Heptamethine Cyanine Dye Sensitizer (IR806) and Lanthanide Upconversion Nanoparticles. Advanced Optical Materials, 12(29), 2400987.

[15] Zhao, T., Wu, D., Zhang, X., & Lyu, H. (2024). A fluorescent sensor based on single band bright red luminescent core-shell UCNPs for the high-sensitivity detection of glucose and glutathione.Analytica Chimica Acta, 1295, 342323.

[16] Konugolu Venkata Sekar, S., Ma, H., Komolibus, K., Dumlupinar, G., Mickert, M. J., Krawczyk, K., & Andersson-Engels, S. (2024). High contrast breast cancer biomarker semi-quantification and immunohistochemistry imaging using upconverting nanoparticles. Biomedical Optics Express, 15(2), 900-909.

[17] Dubey, N., Gupta, S., Shelar, S. B., Barick, K. C., & Chandra, S. (2024). Maximizing Upconversion Luminescence of Co-Doped CaF₂: Yb, Er Nanoparticles at Low Laser Power for Efficient Cellular Imaging. Molecules, 29(17), 4177.