Welcome to Francis Academic Press

Academic Journal of Engineering and Technology Science, 2025, 8(1); doi: 10.25236/AJETS.2025.080111.

High-Q all-dielectric metasurface refractive index sensor based on quasi-BICs

Author(s)

Wang Junhui 

Corresponding Author:
Wang Junhui
Affiliation(s)

School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtang, Hunan, China

Abstract

Bound states in the continuum (BICs) are ideal for realizing optical resonances with ultra-high quality factors (Q) because of their extreme ability to facilitate light-matter interactions and strong field confinement. In this work, an all-dielectric metasurface whose unit cell consists of a silicon disc is designed, on which a symmetry-protected BIC (SP-BIC) is observed, and the breaking of the in-plane symmetry can be made to transform it into a quasi-BIC (QBIC) with a high-quality factor. A refractive index sensor is realized based on the principle that the resonance peak's position changes with the background refractive index change. Using the quadratic inverse relationship between the quality factor and the asymmetry parameter, the quality factor is changed by adjusting the asymmetry parameter to optimize the sensing performance. After tuning, the refractive index sensing sensitivity and figure of merit of this metasurface reached 265.58 nm/RIU and 2178.31 RIU-1, respectively, a parameter that exceeds many existing research results. This all-dielectric metasurface design with a high Q-factor pushes the BIC-based refractive index sensing to higher sensitivity and higher accuracy.

Keywords

all-dielectric metasurface, bound states in the continuum, refractive index sensing

Cite This Paper

Wang Junhui. High-Q all-dielectric metasurface refractive index sensor based on quasi-BICs. Academic Journal of Engineering and Technology Science (2025), Vol. 8, Issue 1: 73-80. https://doi.org/10.25236/AJETS.2025.080111.

References

[1] Sadreev, A. F. (2021). Interference traps waves in an open system: bound states in the continuum. Reports on Progress in Physics, 84(5), 055901.

[2] Koshelev, K., Bogdanov, A., & Kivshar, Y. (2019). Meta-optics and bound states in the continuum. Science Bulletin, 64(12), 836–842.

[3] Tong, H., Liu, S., Zhao, M., & Fang, K. (2020). Observation of phonon trapping in the continuum with topological charges. Nature Communications, 11(1), 5216.

[4] Linton, C. M., & McIver, P. (2007). Embedded trapped modes in water waves and acoustics. Wave Motion, 45(1–2), 16–29.

[5] Marinica, D. C., Borisov, A. G., & Shabanov, S. V. (2008). Bound States in the Continuum in Photonics. Physical Review Letters, 100(18), 183902.

[6] Bulgakov, E. N., & Sadreev, A. F. (2008). Bound states in the continuum in photonic waveguides inspired by defects. Physical Review B, 78(7), 075105.

[7] Romano, S., Zito, G., Lara Yépez, S. N., Cabrini, S., Penzo, E., Coppola, G., Rendina, I., & Mocellaark, V. (2019). Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. Optics Express, 27(13), 18776.

[8] Srivastava, Y. K., Ako, R. T., Gupta, M., Bhaskaran, M., Sriram, S., & Singh, R. (2019). Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Applied Physics Letters, 115(15), 151105.

[9] Liu, D., Wu, F., Yang, R., Chen, L., He, X., & Liu, F. (2021). Quasi-bound states in the continuum in metal complementary periodic cross-shaped resonators at terahertz frequencies. Optics Letters, 46(17), 4370–4373.

[10] Hsu, C. W., Zhen, B., Lee, J., Chua, S.-L., Johnson, S. G., Joannopoulos, J. D., & Soljačić, M. (2013). Observation of trapped light within the radiation continuum. Nature, 499(7457), 188–191.

[11] Koshelev, K., Favraud, G., Bogdanov, A., Kivshar, Y., & Fratalocchi, A. (2019). Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 8(5), 725–745.

[12] Lee, J., Zhen, B., Chua, S.-L., Qiu, W., Joannopoulos, J. D., Soljačić, M., & Shapira, O. (2012). Observation and Differentiation of Unique High-$Q$ Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs. Physical Review Letters, 109(6), 067401.

[13] Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D., & Soljačić, M. (2016). Bound states in the continuum. Nature Reviews Materials, 1(9), 1–13.

[14] Xu, L., Zangeneh Kamali, K., Huang, L., Rahmani, M., Smirnov, A., Camacho-Morales, R., Ma, Y., Zhang, G., Woolley, M., Neshev, D., & Miroshnichenko, A. E. (2019). Dynamic Nonlinear Image Tuning through Magnetic Dipole Quasi-BIC Ultrathin Resonators. Advanced Science, 6(15), 1802119.

[15] Paddon, P., & Young, J. F. (2000). Two-dimensional vector-coupled-mode theory for textured planar waveguides. Physical Review B, 61(3), 2090–2101.

[16] Bulgakov, E. N., & Sadreev, A. F. (2014). Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide. Optics Letters, 39(17), 5212–5215.

[17] Barrow, M., & Phillips, J. (2020). Polarization-independent narrowband transmittance filters via symmetry-protected modes in high contrast gratings. Optics Letters, 45(15), 4348–4351.

[18] Jain, A., Moitra, P., Koschny, T., Valentine, J., & Soukoulis, C. M. (2015). Electric and Magnetic Response in Dielectric Dark States for Low Loss Subwavelength Optical Meta Atoms. Advanced Optical Materials, 3(10), 1431–1438.

[19] Huang, L., Li, G., Gurarslan, A., Yu, Y., Kirste, R., Guo, W., Zhao, J., Collazo, R., Sitar, Z., Parsons, G. N., Kudenov, M., & Cao, L. (2016). Atomically Thin MoS2 Narrowband and Broadband Light Superabsorbers. ACS Nano, 10(8), 7493–7499.

[20] Wang, Y., Fan, Y., Zhang, X., Tang, H., Song, Q., Han, J., & Xiao, S. (2021). Highly Controllable Etchless Perovskite Microlasers Based on Bound States in the Continuum. ACS Nano, 15(4), 7386–7391.

[21] Chen, Y., Zhao, C., Zhang, Y., & Qiu, C. (2020). Integrated Molar Chiral Sensing Based on High-Q Metasurface. Nano Letters, 20(12), 8696–8703.

[22] Alipour, A., Farmani, A., & Mir, A. (2018). High Sensitivity and Tunable Nanoscale Sensor Based on Plasmon-Induced Transparency in Plasmonic Metasurface. IEEE Sensors Journal, 18(17), 7047–7054. IEEE Sensors Journal.

[23] Kong, Y., Cao, J., Qian, W., Liu, C., & Wang, S. (2018). Multiple Fano Resonance Based Optical Refractive Index Sensor Composed Of Micro-Cavity and Micro-Structure. IEEE Photonics Journal, 10(6), 1–10.

[24] Bezus, E. A., Bykov, D. A., & Doskolovich, L. L. (2018). Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide. Photonics Research, 6(11), 1084.

[25] Zeng, T.-Y., Liu, G.-D., Wang, L.-L., & Lin, Q. (2021). Light-matter interactions enhanced by quasi-bound states in the continuum in a graphene-dielectric metasurface. Optics Express, 29(24), 40177.

[26] Al-Ani, I. A. M., As’Ham, K., Huang, L., Miroshnichenko, A. E., & Hattori, H. T. (2021). Enhanced Strong Coupling of TMDC Monolayers by Bound State in the Continuum. Laser & Photonics Reviews, 15(12), 2100240.

[27] Xiang, J., Chen, J., Lan, S., & Miroshnichenko, A. E. (2020). Nanoscale Optical Display and Sensing Based on the Modification of Fano Lineshape. Advanced Optical Materials, 8(16), 2000489.

[28] Li, Z., Panmai, M., Zhou, L., Li, S., Liu, S., Zeng, J., & Lan, S. (2023). Optical sensing and switching in the visible light spectrum based on the bound states in the continuum formed in GaP metasurfaces. Applied Surface Science, 620, 156779.

[29] Wang, J., Kühne, J., Karamanos, T., Rockstuhl, C., Maier, S. A., & Tittl, A. (2021). All-Dielectric Crescent Metasurface Sensor Driven by Bound States in the Continuum. Advanced Functional Materials, 31(46), 2104652.

[30] Johnson, S. G., & Joannopoulos, J. D. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8(3), 173–190.

[31] Xu, T., Wheeler, M. S., Nair, S. V., Ruda, H. E., Mojahedi, M., & Aitchison, J. S. (2008). Highly confined mode above the light line in a two-dimensional photonic crystal slab. Applied Physics Letters, 93(24), 241105.

[32] Yang, Z.-J., Hao, Z.-H., Lin, H.-Q., & Wang, Q.-Q. (2014). Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale, 6(10), 4985–4997.

[33] Zong, X., Li, L., & Liu, Y. (2021). Photonic bound states in the continuum in nanostructured transition metal dichalcogenides for strong photon–exciton coupling. Optics Letters, 46(24), 6095–6098.

[34] Zhen, B., Hsu, C. W., Lu, L., Stone, A. D., & Soljačić, M. (2014). Topological Nature of Optical Bound States in the Continuum. Physical Review Letters, 113(25), 257401.

[35] Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A., & Kivshar, Y. (2018). Asymmetric Metasurfaces with High-$Q$ Resonances Governed by Bound States in the Continuum. Physical Review Letters, 121(19), 193903.

[36] Limonov, M. F., Rybin, M. V., Poddubny, A. N., & Kivshar, Y. S. (2017). Fano resonances in photonics. Nature Photonics, 11(9), 543–554.

[37] Miroshnichenko, A. E., Flach, S., & Kivshar, Y. S. (2010). Fano resonances in nanoscale structures. Reviews of Modern Physics, 82(3), 2257–2298.

[38] Hinamoto, T., & Fujii, M. (2021). MENP: an open-source MATLAB implementation of multipole expansion for nanophotonics. OSA Continuum, 4(5), 1640–1648.

[39] Alaee, R., Rockstuhl, C., & Fernandez-Corbaton, I. (2018). An electromagnetic multipole expansion beyond the long-wavelength approximation. Optics Communications, 407, 17–21.

[40] Wang, X., Duan, J., Chen, W., Zhou, C., Liu, T., & Xiao, S. (2020). Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance. Physical Review B, 102(15), 155432.

[41] Li, Z., Xie, M., Nie, G., Wang, J., & Huang, L. (2023). Pushing Optical Virus Detection to a Single Particle through a High-Q Quasi-bound State in the Continuum in an All-dielectric Metasurface. The Journal of Physical Chemistry Letters, 14(48), 10762–10768.

[42] Zhou, C., Liu, G., Ban, G., Li, S., Huang, Q., Xia, J., Wang, Y., & Zhan, M. (2018). Tunable Fano resonator using multilayer graphene in the near-infrared region. Applied Physics Letters, 112(10), 101904.

[43] Guo, L., Zhang, Z., Xie, Q., Li, W., Xia, F., Wang, M., Feng, H., You, C., & Yun, M. (2023). Toroidal dipole bound states in the continuum in all-dielectric metasurface for high-performance refractive index and temperature sensing. Applied Surface Science, 615, 156408.