Welcome to Francis Academic Press

Academic Journal of Environment & Earth Science, 2025, 7(2); doi: 10.25236/AJEE.2025.070203.

Response Characteristics of Phytoplankton Communities in Plateau Shallow Lakes to Enclosure-Based Ecological Restoration

Author(s)

Ying Long, Yikun Zheng, Yue Meng, Jiaowei Lu, Tao Lin

Corresponding Author:
Tao Lin
Affiliation(s)

Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550025, China

Abstract

In this study, an in situ ecological restoration experiment was conducted using methods such as enclosure wave suppression, sediment exposure, and plant cultivation to investigate the effects of different restoration strategies on water quality, submerged plants, and phytoplankton communities. The results indicated that combining plant cultivation with enclosure wave suppression effectively restored the submerged plant. Wave suppression alone supported natural plant recovery but with significantly lower coverage and biomass than artificial planting. Water quality improvement was most notable in the closed enclosure + sediment exposure + plant cultivation (closed enclosure + sediment exposure restoration experiment, CS) group compared to the permeable enclosure + plant cultivation (open enclosure restoration experiment, OE) and closed enclosure wave suppression (closed enclosure restoration experiment, CE) groups. The OE group exhibited the highest phytoplankton species richness (204 species), followed by the CS (187 species) and CE groups (170 species). However, the phytoplankton cell density was highest in the CE group (0.75–6.61×106 cells/L), moderate in the OE group (0.26–1.96×106 cells/L), and lowest in the CS group (0.08–0.47×106 cells/L), highlighting the superior water ecological improvement achieved by the CS measures. Non-metric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) identified distinct algal community structures across restoration strategies, with the OE group displaying the highest variability. Redundancy analysis (RDA) revealed that the phytoplankton communities in the CE group were influenced by water temperature (WT), ammonium nitrogen (NH+4-N), nitrate nitrogen (NO-3-N), and dissolved oxygen (DO), whereas those in the OE group were mainly affected by WT and NO-3-N. In the CS group, the key factors included WT, chemical oxygen demand (CODMn), NH+4-N, and pH. This study highlights the ecological benefits of different restoration measures and could provide valuable insights into lake ecological restoration.

Keywords

Phytoplankton; Water ecological restoration; Enclosure wave suppression; Submerged plants

Cite This Paper

Ying Long, Yikun Zheng, Yue Meng, Jiaowei Lu, Tao Lin. Response Characteristics of Phytoplankton Communities in Plateau Shallow Lakes to Enclosure-Based Ecological Restoration. Academic Journal of Environment & Earth Science(2025), Vol. 7, Issue 2: 21-37. https://doi.org/10.25236/AJEE.2025.070203.

References

[1] K. Vasilakou, P. Nimmegeers, Y. Yao, P. Billen, and S. Van Passel. Global spatiotemporal characterization factors for freshwater eutrophication under climate change scenarios. Science of The Total Environment. 2025, 959, 178275.

[2] Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408.

[3] Poikane, S.; Kelly, M.G.; Free, G.; Carvalho, L.; Hamilton, D.P.; Katsanou, K.; Lürling, M.; Warner, S.; Spears, B.M.; Irvine, K. A global assessment of lake restoration in practice: New insights and future perspectives. Ecol. Indic. 2024, 158, 111330.

[4] UNESCO.; UN, W.; Programme., W.W.A. The United Nations World Water Development Report 2018: nature-based solutions for water; UNESCO: Paris, 2018.

[5] Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279.

[6] Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010.

[7] Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196.

[8] Smith, V.H.; Schindler, D.W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207.

[9] Zhang, S.; Liu, A.; Ma, J.; Zhou, Q.; Xu, D.; Cheng, S.; Zhao, Q.; Wu, Z. Changes in physicochemical and biological factors during regime shifts in a restoration demonstration of macrophytes in a small hypereutrophic Chinese lake. Ecol. Eng. 2010, 36, 1611–1619.

[10] Waajen, G.; van Oosterhout, F.; Douglas, G.; Lürling, M. Geo-engineering experiments in two urban ponds to control eutrophication. Water Res. 2016, 97, 69–82.

[11] Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596.

[12] Huang, W.; Yang, X.; Chen, H.; Lu, C.; Che, F. Promoting effect of submerged plants on phosphorus source and sink in sediments: Response of phosphorus release and microbial community to Vallisneria natans and Potamogeton malaianus growth. Environ. Technol. Innov. 2024, 36, 103899.

[13] Hilt, S.; Gross, E.M.; Hupfer, M.; Morscheid, H.; Mählmann, J.; Melzer, A.; Poltz, J.; Sandrock, S.; Scharf, E.-M.; Schneider, S., et al. Restoration of submerged vegetation in shallow eutrophic lakes – A guideline and state of the art in Germany. Limnologica 2006, 36, 155–171.

[14] Zhu, G.; Cao, T.; Zhang, M.; Ni, L.; Zhang, X. Fertile sediment and ammonium enrichment decrease the growth and biomechanical strength of submersed macrophyte Myriophyllum spicatum in an experiment. Hydrobiologia 2014, 727, 109–120.

[15] Cao, T.; Xie, P.; Ni, L.; Zhang, M.; Xu, J. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte, Potamogeton crispus, under NH4+ stress and low light availability. Environ. Exp. Bot. 2009, 66, 74–78.

[16] Cao, T.; Ni, L.; Xie, P.; Xu, J.; Zhang, M. Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshw. Biol. 2011, 56, 1620–1629.

[17] Yuan, G.; Cao, T.; Fu, H.; Ni, L.; Zhang, X.; Li, W.; Song, X.; Xie, P.; Jeppesen, E. Linking carbon and nitrogen metabolism to depth distribution of submersed macrophytes using high ammonium dosing tests and a lake survey. Freshw. Biol. 2013, 58, 2532–2540.

[18] Yuan, G.; Fu, H.; Zhong, J.; Cao, T.; Ni, L.; Zhu, T.; Li, W.; Song, X. Nitrogen/carbon metabolism in response to NH4+ pulse for two submersed macrophytes. Aquat. Bot. 2015, 121, 76–82.

[19] Zhang, M.; Wang, Z.; Xu, J.; Liu, Y.; Ni, L.; Cao, T.; Xie, P. Ammonium, microcystins, and hypoxia of blooms in eutrophic water cause oxidative stress and C–N imbalance in submersed and floating-leaved aquatic plants in Lake Taihu, China. Chemosphere 2011, 82, 329–339.

[20] Qiu, D.; Wu, Z.; Liu, B.; Deng, J.; Fu, G.; He, F. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol. Eng. 2001, 18, 147–156.

[21] Chen, K.; Bao, C.; Zhou, W. Ecological restoration in eutrophic Lake Wuli: A large enclosure experiment. Ecol. Eng. 2009, 35, 1646–1655.

[22] Ye, C.; Li, C.; Yu, H.; Song, X.; Zou, G.; Liu, J. Study on ecological restoration in near-shore zone of a eutrophic lake, Wuli Bay, Taihu Lake. Ecol. Eng. 2011, 37, 1434–1437.

[23] Jeppesen, E.; Søndergaard, M.; Lauridsen, T.L.; Davidson, T.A.; Liu, Z.; Mazzeo, N.; Trochine, C.; Özkan, K.; Jensen, H.S.; Trolle, D., et al. Chapter 6 - Biomanipulation as a Restoration Tool to Combat Eutrophication: Recent Advances and Future Challenges. Adv. Ecol. Res. 2012, 47, 411–488.

[24] Peng, X.; Lin, Q.; Liu, B.; Huang, S.; Yan, W.; Zhang, L.; Ge, F.; Zhang, Y.; Wu, Z. Effect of submerged plant coverage on phytoplankton community dynamics and photosynthetic activity in situ. J. Environ. Manage. 2022, 301, 113822.

[25] Chao, C.; Lv, T.; Wang, L.; Li, Y.; Han, C.; Yu, W.; Yan, Z.; Ma, X.; Zhao, H.; Zuo, Z., et al. The spatiotemporal characteristics of water quality and phytoplankton community in a shallow eutrophic lake: Implications for submerged vegetation restoration. Sci. Total Environ. 2022, 821, 153460.

[26] C. Siwen et al. Difference on the limiting factors for submersed macrophyte occurrence along water depths in the Dongshan Bay of Lake Taihu. Journal of Lake Sciences.2025, 37, 171-183.(in Chinese)

[27] Josué, I.I.P.; Sodré, E.O.; Setubal, R.B.; Cardoso, S.J.; Roland, F.; Figueiredo-Barros, M.P.; Bozelli, R.L. Zooplankton functional diversity as an indicator of a long-term aquatic restoration in an Amazonian lake. Restor. Ecol. 2021, 29, e13365.

[28] Xu, F.; Wang, X.; Wang, Y.; Sun, C.; Dong, J.; Li, Y. Evaluation of Restoration Effect of Submerged Plant Community in Urban Rivers Replenished by Reclaimed Water. Sustainability 2023, 15, 13861.

[29] Li, A.; Huang, X.; Tian, Y.; Dong, J.; Zheng, F.; Xia, P. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China. Chinese J. Plant Ecol. 2023, 47, 1171–1181. (in Chinese)

[30] SEPA. Water and Exhausted Water Monitoring Analysis Method; Beijing, China, 2002. (in Chinese)

[31] Meng, J.; Zhao, R.; Qiu, X.; Liu, S. Nested Patterns of Phytoplankton and Zooplankton and Seasonal Characteristics of Their Mutualistic Networks: A Case Study of the Upstream Section of the Diannong River in Yinchuan City, China. Water 2023, 15, 4265.

[32] Hu, H.; Wei, Y. The Freshwater Algae of China-Systematics, Taxonomy and Ecology; Science Press: Beijing, 2006. (in Chinese)

[33] Liu, J. Effects of submerged macrophytes restoration on water quality, sediment properties and bacterial communities in the Caohai Lake, Guizhou, China. Master’s Thesis, Guizhou Normal University, Guiyang, China, 2024. (in Chinese)

[34] Shannon., C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423.

[35] Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144.

[36] Lampitt, R.S.; Wishner, K.F.; Turley, C.M.; Angel, M.V. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol. 1993, 116, 689–702.

[37] X. Tian et al. Eco-Engineering Improves Water Quality and Mediates Plankton–Nutrient Interactions in a Restored Wetland. Water. 2024 16, 1821.

[38] Li, W.; Xu, S.;Chen, X.;Han, D. and Mu, B. Influencing Factors and Nutrient Release from Sediments in the Water Level Fluctuation Zone of Biliuhe Reservoir, a Drinking Water Reservoir. Water 2023, 15, 3659.

[39] Hou, H.; Zhu, W.; Liu, J.; Lin, X.; Wang, R.; Xie, S.; Wu, H. Suppression of phosphorus release and acceleration of sediment consolidation via exposure to sunlight and air (sunbathing). J. Soils Sediments 2024, 24, 980–990.

[40] Schreckinger, J.; Mutz, M.; Mendoza-Lera, C. When water returns: Drying history shapes respiration and nutrients release of intermittent river sediment. Sci. Total Environ. 2022, 838, 155950.

[41] Zhou, C.; Yang, G.; Lu, J.; Li, M.; Chen, S. Research progress about sediment disposal and factors influencing release of sediment pollutants in rivers and lakes. Environ. Eng. 2016, 34, 113-117+194. (in Chinese)

[42] Liu, X.; Deng, J.; Li, Y.; Jeppesen, E.; Zhang, M.; Chen, F. Nitrogen Reduction Causes Shifts in Winter and Spring Phytoplankton Composition and Resource Use Efficiency in a Large Subtropical Lake in China. Ecosystems 2023, 26, 1640–1655.

[43] Cao, J.; Hou, Z.Y.; Li, Z.K.; Zheng, B.H.; Chu, Z.S. Spatiotemporal dynamics of phytoplankton biomass and community succession for driving factors in a meso-eutrophic lake. J. Environ. Manage. 2023, 345, 118693.

[44] Jia, J.; Chen, Q.; Ren, H.; Lu, R.; He, H.; Gu, P. Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. Int. J. Environ. Res. Public Health 2022, 19, 3135.

[45] Feng, Q.; Wang, S.; Liu, X.; Liu, Y. Seasonal and Spatial Variations of Phytoplankton Communities and Correlations with Environmental Factors in Lake Dianchi. Acta Sci. Nat. Univ. Pekinensis 2020, 56, 184–192. (in Chinese)

[46] Tan, X.; Kong, F.; Yu, Y.; Shi, X.; Zhang, M. Effects of enhanced temperature on algae recruitment and phytoplankton community succession. China Environ. Sci. 2009, 29, 578–582. (in Chinese)

[47] Zhang, Z.; Shi, X.; Liu, G.; Yang, X.; Wang, Y.; Liu, X. The relationship between planktonic algae changes and the water quality of the West Lake, Hangzhou, China. Acta Ecol. Sin. 2009, 29, 2980–2988. (in Chinese)

[48] Kim, Y.; Son, J.; Lee, Y.-S.; Wee, J.; Lee, M.; Cho, K. Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels. Sci. Rep. 2020, 10, 4419.

[49] Rasconi, S.; Gall, A.; Winter, K.; Kainz, M.J. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton. PLOS ONE 2015, 10, e0140449.

[50] Wang, Z.; Akbar, S.; Sun, Y.; Gu, L.; Zhang, L.; Lyu, K.; Huang, Y.; Yang, Z. Cyanobacterial dominance and succession: Factors, mechanisms, predictions, and managements. J. Environ. Manage. 2021, 297, 113281.

[51] Henson, S.A.; Cael, B.B.; Allen, S.R.; Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 2021, 12, 5372.

[52] Ye, X.; Skidmore, A.K.; Wang, T. Joint Effects of Habitat Heterogeneity and Species’ Life-History Traits on Population Dynamics in Spatially Structured Landscapes. PLOS ONE 2014, 9, e107742.

[53] Thomsen, M.S.; Altieri, A.H.; Angelini, C.; Bishop, M.J.; Bulleri, F.; Farhan, R.; Frühling, V.M.M.; Gribben, P.E.; Harrison, S.B.; He, Q., et al. Heterogeneity within and among co-occurring foundation species increases biodiversity. Nat. Commun. 2022, 13, 581.

[54] Lv, Z.; Ma, L.; Zhang, H.; Zhao, Y.; Zhang, Q. Environmental and hydrological synergies shaping phytoplankton diversity in the Hetao irrigation district. Environ. Res. 2024, 263, 120142.

[55] Meng, F.; Li, Z.; Li, L.; Lu, F.; Liu, Y.; Lu, X.; Fan, Y. Phytoplankton alpha diversity indices response the trophic state variation in hydrologically connected aquatic habitats in the Harbin Section of the Songhua River. Sci. Rep. 2020, 10, 21337.

[56] Y. Kim, J. Son, Y. S. Lee, J. Wee, M. Lee, and K. Cho. Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels. Sci Rep, 2020, 10, 4419.

[57] S. O. Akinnawo. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges. 2023, 12, 100733.

[58] H. Hou et al. Suppression of phosphorus release and acceleration of sediment consolidation via exposure to sunlight and air (sunbathing). Journal of Soils and Sediments,2024, 24, 980-990.

[59] H. Wang, G. Zhong, H. Yan, H. Liu, Y. Wang, and C. Zhang. Growth Control of Cyanobacteria by Three Submerged Macrophytes. Environ Eng Sci, 29, 420-425.

[60] Zhang, H.; Min, F.; CuiHuirong; Peng, X.; Zhang, X.; Zhang, S.; Li, Z.; Ge, F.; Zhang, L.; Wu, Z., et al. Characteristics of Phytoplankton Communities and Key Impact Factors in Three Types of Lakes in Wuhan. Environ. Sci. 2023, 44, 2093–2102. (in Chinese)

[61] Wang, Y.; Li, Y.; Zhang, B.; Guo, Y.; Chen, J.; Han, S. Structural Characteristics of Zooplankton and Phytoplankton Communities and Its Relationship with Environmental Factors in Different Regions of Nanhu Lake in Jiaxing City. Environ. Sci. 2022, 43, 3106–3117. (in Chinese)

[62] Liao, T. Dynamical complexity driven by water temperature in a size-dependent phytoplankton–zooplankton model with environmental variability. Chin. J. Phys. 2024, 88, 557–583.

[63] Zhang, P.; Grutters, B.M.C.; van Leeuwen, C.H.A.; Xu, J.; Petruzzella, A.; van den Berg, R.F.; Bakker, E.S. Effects of Rising Temperature on the Growth, Stoichiometry, and Palatability of Aquatic Plants. Front. Plant Sci. 2019, 9, 1947.

[64] Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733.

[65] Li, L.; Zhang, H.; Yue, C.; Li, H.; Wang, J.; Yang, L. Purification Effect of Various Submerged Macrophyte Combinations on Eutrophic Water. J. Zhejiang Forest. Sci. Technol. 2020, 40, 1–9. (in Chinese)

[66] Wang, H.; Zhong, G.; Yan, H.; Liu, H.; Wang, Y.; Zhang, C. Growth Control of Cyanobacteria by Three Submerged Macrophytes. Environ. Eng. Sci.2012, 29, 420–425.

[67] Maredová, N.; Altman, J.; Kaštovský, J. The effects of macrophytes on the growth of bloom-forming cyanobacteria: Systematic review and experiment. Sci. Total Environ. 2021, 792, 148413.

[68] Bao, Y.; Huang, T.; Ning, C.; Sun, T.; Tao, P.; Wang, J.; Sun, Q. Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China. J. Environ. Sci. 2023, 124, 769–781.

[69] Yu, H.; Zhang, J.; Yin, Z.; Liu, Z.; Chen, J.; Xu, J.; Gao, Q.; Liu, J. A method for quantifying the contribution of algal sources to CODMn in water bodies based on ecological chemometrics and its potential applications. J. Environ. Chem. Eng. 2024, 12, 111943.

[70] Ren, M.; Hu, A.; Zhang, L.; Yao, X.; Zhao, Z.; Kimirei, I.A.; Wang, J. Acidic proteomes are linked to microbial alkaline preference in African lakes. Water Res. 2024, 266, 122393.

[71] Diatta, J.; Waraczewska, Z.; Grzebisz, W.; Niewiadomska, A.; Tatuśko-Krygier, N. Eutrophication Induction Via N/P and P/N Ratios Under Controlled Conditions—Effects of Temperature and Water Sources. Water Air Soil Pollut. 2020, 231, 149.

[72] Ahmad Ariffian, N.N.; Mohamed, K.N. Effects of pH Changes on Phytoplankton Biomass. ASM Sci. J. 2024, 19, 2024.

[73] Fu, H.; Cai, G.; Özkan, K.; Johansson, L.S.; Søndergaard, M.; Lauridsen, T.L.; Yuan, G. and Jeppesen, E. Re-oligotrophication and warming stabilize phytoplankton networks. Water Res. 2024, 253, 121325.

[74] Cai, G.; Ge, Y.; Dong, Z.; Liao, Y.; Chen, Y.; Wu, A.; Li, Y.; Liu, H.; Yuan, G.; Deng, J., et al. Temporal shifts in the phytoplankton network in a large eutrophic shallow freshwater lake subjected to major environmental changes due to human interventions. Water Res. 2024, 261, 122054.

[75] Huo, X.; Wang, Y.; Zhou, L.; Wang, S.; Jiang, X.; Chen, K.; Wang, P. Characterization of the Ecological Niche and Interspecific Connectivity of Plankton in Baiyangdian Lake by Combining Ecological Networks. Environ. Sci. 2024, 45, 5298–5307. (in Chinese)

[76] Peng, L.; Tao, L.; Chen, S.; Peng, G.; Dai, L.; Li, G.; Zhang, H. Characteristics of Phytoplankton Functional Groups in Paddy-pond Water Recirculation Aquaculture System. J. Hydroecol. 2024, 1–11. (in Chinese)