Frontiers in Medical Science Research, 2025, 7(2); doi: 10.25236/FMSR.2025.070212.
Fan Liu, Huabiao Yan
School of Science, Jiangxi University of Science and Technology, Ganzhou, 341000, China
Combination therapy has emerged as a highly effective strategy for medicating complex diseases. With the proliferation of diverse biological data, computational methodologies have been extensively employed to pinpoint candidate drug combinations. Over the recent years, numerous models for predicting drug combinations have come to the fore, and several systematic reviews have been published on this topic. However, these reviews primarily focus on two-drug models, with limited attention given to multi-drug or high-order drug combinations. Therefore, the objective of this review is to provide a comprehensive overview of existing multi-drug prediction models. The review begins by itemizing potential data sources that may aid in the prediction of multi-drug combinations. It then summarizes the various computational models utilized for exploring multi-drug combinations. Finally, the review concludes by highlighting the key challenges and future directions for predictive multi-drug models.
Multi-drug Combination, High-order Drug Combination, Predictive Methods, Computational Model, Machine Learning
Fan Liu, Huabiao Yan. Review of In Silico Methods for Multi-drug Combination Discovery. Frontiers in Medical Science Research(2025), Vol. 7, Issue 2: 83-90. https://doi.org/10.25236/FMSR.2025.070212.
[1] Nair NU, Greninger P, Zhang X, et al. A landscape of response to drug combinations in non-small cell lung cancer[J]. Nat Commun, 2023, 14(1): 3830.
[2] Yap TA, Parkes EE, Peng W, et al. Development of Immunotherapy Combination Strategies in Cancer[J]. Cancer Discov, 2021, 11(6): 1368-1397.
[3] Gilad Y, Gellerman G, Lonard DM, et al. Drug Combination in Cancer Treatment-From Cocktails to Conjugated Combinations[J]. Cancers (Basel), 2021,13(4): 669.
[4] Shyr ZA, Cheng YS, Lo DC, et al. Drug combination therapy for emerging viral diseases[J]. Drug Discov Today, 2021, 26(10): 2367-2376.
[5] Doos L, Roberts EO, Corp N, et al. Multi-drug therapy in chronic condition multimorbidity: a systematic review[J]. Fam Pract, 2014, 31(6): 654-663.
[6] Xie X, Wu C, Hao Y, et al. Benefits and risks of drug combination therapy for diabetes mellitus and its complications: a comprehensive review[J]. Front Endocrinol (Lausanne), 2023, 14: 1301093.
[7] Twarog NR, Connelly M, Shelat AA. A critical evaluation of methods to interpret drug combinations[J]. Sci Rep, 2020, 10(1): 5144.
[8] Jaaks P, Coker EA, Vis DJ, et al. Effective drug combinations in breast, colon and pancreatic cancer cells[J]. Nature, 2022, 603(7899): 166-173.
[9] Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer[J]. N Engl J Med, 2019, 381(17): 1632-1643.
[10] Wu L, Wen Y, Leng D, et al. Machine learning methods, databases and tools for drug combination prediction[J]. Brief Bioinform, 2022, 23(1): bbab355.
[11] Tsigelny IF. Artificial intelligence in drug combination therapy[J]. Brief Bioinform, 2019, 20(4): 1434-1448.
[12] Meng F, Li F, Liu JX, et al. NEXGB: A Network Embedding Framework for Anticancer Drug Combination Prediction[J]. Int J Mol Sci, 2022, 23(17): 9838.
[13] Preuer K, Lewis RPI, Hochreiter S, et al. Klambauer G. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning[J]. Bioinformatics, 2018, 34(9): 1538-1546.
[14] Yang J, Xu Z, Wu WKK, et al. GraphSynergy: a network-inspired deep learning model for anticancer drug combination prediction[J]. J Am Med Inform Assoc, 2021, 28(11): 2336-2345.
[15] Rafiei F, Zeraati H, Abbasi K, et al. DeepTraSynergy: drug combinations using multimodal deep learning with transformers[J]. Bioinformatics, 2023, 39(8): btad438.
[16] Zhang G, Gao Z, Yan C, et al. KGANSynergy: knowledge graph attention network for drug synergy prediction[J]. Brief Bioinform, 2023, 24(3): bbad167.
[17] Yu Wang, Junjie Wang, Yun Liu, et al. Deep learning for predicting synergistic drug combinations: State-of-the-arts and future directions[J]. Clinical and Translational Discovery, 2024, 4(3): e317
[18] Besharatifard, Milad, Vafaee F. A review on graph neural networks for predicting synergistic drug combinations[J]. Artif Intell Rev, 2024, 57, 49.
[19] Chen, J., Lin, A., Jiang, A. et al. Computational frameworks transform antagonism to synergy in optimizing combination therapies[J]. NPJ Digit. Med, 2025, 8(1): 44.
[20] Wang NN, Zhu B, Li XL et al. Comprehensive Review of Drug-Drug Interaction Prediction Based on Machine Learning: Current Status, Challenges, and Opportunities[J]. J. Chem Inf. Model, 2024, 64: 96-109.
[21] Zhao Y, Yin J, Zhang L, et al. Drug-drug interaction prediction: databases, web servers and computational models[J]. Brief Bioinform, 2023, 25(1): bbad445.
[22] Davies M, Nowotka M, Papadatos G, et al. ChEMBL web services: streamlining access to drug discovery data and utilities[J]. Nucleic Acids Res, 2015, 43(W1): W612-W620.
[23] Kim S, Chen J, Cheng T, et al. PubChem 2025 update[J]. Nucleic Acids Res, 2025, 53(D1): D1516-D1525.
[24] Knox C, Wilson M, Klinger CM, et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024[J]. Nucleic Acids Res, 2024, 52(D1): D1265-D1275.
[25] Tian Y, Yi J, Wang N, et al. DDInter 2.0: an enhanced drug interaction resource with expanded data coverage, new interaction types, and improved user interface[J]. Nucleic Acids Res, 2025, 53(D1): D1356-D1362.
[26] Burley SK, Bhatt R, Bhikadiya C, et al. Updated resources for exploring experimentally-determined PDB structures and Computed Structure Models at the RCSB Protein Data Bank[J]. Nucleic Acids Res, 2025, 53(D1): D564-D574.
[27] Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
[28] Tiqing Liu, Linda Hwang, Stephen K Burley, et al. BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data[J], Nucleic Acids Res, 2025, 53(D1): D1633–D1644.
[29] Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data[J]. Nucleic Acids Res, 2016, 44(D1): D380-D384.
[30] Zhou Y, Zhang YT, Zhao DH, et al. TTD: Therapeutic Target Database describing target druggability information[J]. Nucleic Acids Res, 2024, 52(D1): D1465-D1477
[31] Kanehisa M, Furumichi M, Sato Y, et al. KEGG: biological systems database as a model of the real world[J]. Nucleic Acids Res, 2025, 53(D1): D672-D677.
[32] Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells[J]. Nucleic Acids Res, 2013, 41(Database issue):D955-D961.
[33] Zagidullin B, Aldahdooh J, Zheng S, et al. DrugComb: an integrative cancer drug combination data portal[J]. Nucleic Acids Res, 2019, 47(W1): W43-W51.
[34] Liu H, Zhang W, Zou B, et al. DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy[J]. Nucleic Acids Res, 2020, 48(D1): D871-D881.
[35] Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity[J]. Nature, 2012, 483(7391): 603-607.
[36] Vazquez F, Boehm JS. The Cancer Dependency Map enables drug mechanism-of-action investigations[J]. Mol Syst Biol, 2020, 16(7): e9757.
[37] Abbasi F, Rousu J. New methods for drug synergy prediction: a mini-review[J]. Curr Opin Struct Biol, 2024, 86: 102827.
[38] Luo H, Li M, Yang M, et al. Biomedical data and computational models for drug repositioning: a comprehensive review[j]. Brief Bioinform, 2021, 22(2): 1604-1619.
[39] Madani Tonekaboni SA, Soltan Ghoraie L, Manem VSK, et al. Predictive approaches for drug combination discovery in cancer[J]. Brief Bioinform, 2018, 19(2): 263-276.
[40] Chasioti D, Yao X, Zhang P, et al. Mining Directional Drug Interaction Effects on Myopathy Using the FAERS Database[J]. IEEE J Biomed Health Inform, 2019, 23(5): 2156-2163.
[41] Larkins-Ford J, Degefu YN, Van N, et al. Design principles to assemble drug combinations for effective tuberculosis therapy using interpretable pairwise drug response measurements[J]. Cell Rep Med, 2022, 3(9): 100737.
[42] Hong Y, Chen D, Jin Y, et al. PINet 1.0: A pathway network-based evaluation of drug combinations for the management of specific diseases[J]. Front Mol Biosci, 2022, 9: 971768.
[43] She S, Chen H, Ji W, et al. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies[J]. Front Pharmacol, 2022, 13, 1032875.
[44] Peng B, Ning X. 2019. Deep Learning for High-Order Drug-Drug Interaction Prediction[J]. BCB '19: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 2019, 197–206.
[45] Xin X, Yuan JH, Lu S, et al. Synergistic Multi-Drug Combination Prediction Based on Heterogeneous Network Representation Learning with Contrastive Learning[J]. Tsinghua Science and Technology, 2025, 30(1): 215-233.
[46] Li VOK, Han Y, Kaistha T, et al. DeepDrug as an expert guided and AI driven drug repurposing methodology for selecting the lead combination of drugs for Alzheimer’s disease[J]. Sci Rep, 2025, 15(1): 2093.
[47] Liu TY, Chu TY, Luo X, Zhao HY. Buiding A Foundation Model for Drug Synergy Analysis Powered by Large Language Models[J]. bioRxiv, 2024, 4(8): 588634.
[48] Chiang WH, Schleyer T, Shen L, et al. Pattern Discovery from High-Order Drug-Drug Interaction Relations[J]. J Healthc Inform Res, 2018, 2(3): 272-304.
[49] Yao X, Tsang T, Sun Q, et al. Mining and visualizing high-order directional drug interaction effects using the FAERS database[J]. BMC Med Inform Decis Mak, 2020, 20(Suppl 2): 50.
[50] Mokhtari M, Khoshbakht S, Akbari ME, et al. BMC3PM: bioinformatics multidrug combination protocol for personalized precision medicine and its application in cancer treatment[J]. BMC Med Genomics, 2023, 16(1): 328.
[51] Shi Y, Chiang CW, Unroe KT, et al. Application of an Innovative Data Mining Approach Towards Safe Polypharmacy Practice in Older Adults[J]. Drug Saf, 2024, 47(1): 93-102.
[52] Pan Y, Ren H, Lan L, et al. Review of Predicting Synergistic Drug Combinations[J]. Life (Basel), 2023, 13(9): 1878.
[53] Wu WT, Li YJ, Feng AZ, et al. Data mining in clinical big data: the frequently used databases, steps, and methodological models[J]. Mil Med Res, 2021, 8(1): 44.