Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2025, 7(2); doi: 10.25236/FMSR.2025.070220.

The research progress on the mechanisms and therapeutic targets of ferroptosis and epigenetic modifications in diabetic complications

Author(s)

Junyu Meng1,2, Guihong Huang1,2,3

Corresponding Author:
Guihong Huang
Affiliation(s)

1Department of Pharmacy, The Second Affiliated Hospital of Guilin Medical University; Lingui Clinical College of Guilin Medical University, Guilin, Guangxi, (541199), China

2Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, Guangxi, (541199), China

3Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi, (541199), China

Abstract

Diabetes, as a prevalent chronic metabolic disease, imposes a heavy medical burden and economic pressure on society. The long-term dysregulation of glucose metabolism leads to multi-system (including cardiovascular, renal, neurological, etc.) damage, which constitutes the core pathological features of diabetic complications. In recent years, ferroptosis and epigenetic regulation have emerged as new research directions, gradually becoming a burgeoning field of study. Increasing evidence suggests that epigenetics may play a significant role in regulating the relationship between ferroptosis and diabetic complications. Notably, the epigenetics of certain key iron metabolism genes may influence the epigenetic “switch” of the ferroptosis pathway. This article systematically reviews the molecular mechanisms of ferroptosis and epigenetics in diabetic microvascular complications, neuropathy, and other related conditions, while exploring potential therapeutic targets based on epigenetic regulation to provide a theoretical basis for the treatment of diabetic complications.

Keywords

Ferroptosis, Diabetes, Epigenetics, Diabetic Complications

Cite This Paper

Junyu Meng, Guihong Huang. The research progress on the mechanisms and therapeutic targets of ferroptosis and epigenetic modifications in diabetic complications. Frontiers in Medical Science Research (2025), Vol. 7, Issue 2: 138-145. https://doi.org/10.25236/FMSR.2025.070220.

References

[1] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011 Jan;34 Suppl 1(Suppl 1): S62-9.

[2] Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan; 183:109119. 

[3] Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018 Feb;14(2):88-98.

[4] Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell. 2024 Jul 25;187(15):3789-3820.

[5] Jin EJ, Jo Y, Wei S, Rizzo M, Ryu D, Gariani K. Ferroptosis and iron metabolism in diabetes: Pathogenesis, associated complications, and therapeutic implications. Front Endocrinol (Lausanne). 2024 Aug 30; 15:1447148.

[6] Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282.

[7] Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, Speek O, Morra F, van der Veen CHJT, Lezoualc'h F, Cheng X, Schmidt M, Dolga AM. Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants (Basel). 2022 Feb 4;11(2):314.

[8] Zhang Z, Li L, Fu W, Fu Z, Si M, Wu S, Shou Y, Pei X, Yan X, Zhang C, Wang T, Liu F. Therapeutic effects of natural compounds against diabetic complications via targeted modulation of ferroptosis. Front Pharmacol. 2024 Sep 18; 15:1425955.

[9] Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, Xiong T, Yue L, Yang X. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne). 2024 Jan 8; 14:1248934.

[10] Miao R, Fang X, Zhang Y, et al. Iron metabolism and ferroptosis in typediabetes mellitus and complications: mechanisms and therapeutic oppoties. Cell Death Dis. 2023 Mar 8;14(3):186.

[11] Ling C, Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019 May 7;29(5):1028-1044.

[12] Christofferson DE, Yuan J. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 2010 Apr;22(2):263-8.

[13] Li J, Zhou Y, Wang H, Lou J, Lenahan C, Gao S, Wang X, Deng Y, Chen H, Shao A. Oxidative Stress-Induced Ferroptosis in Cardiovascular Diseases and Epigenetic Mechanisms. Front Cell Dev Biol. 2021 Aug 19; 9:685775.

[14] Jacquemyn J, Ralhan I, Ioannou MS. Driving factors of neuronal ferroptosis. Trends Cell Biol. 2024 Jul;34(7):535-546.

[15] Yang M, Luo H, Yi X, Wei X, Jiang DS. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm (2020). 2023 May 22;4(3): e267.

[16] Wu J, Zhu S, Wang P, Wang J, Huang J, Wang T, Guo L, Liang D, Meng Q, Pan H. Regulators of epigenetic change in ferroptosis‑associated cancer (Review). Oncol Rep. 2022 Dec;48(6):215.

[17] He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab. 2022 Jun; 60:101470.

[18] Pei Y, Qian Y, Wang H, Tan L. Epigenetic Regulation of Ferroptosis-Associated Genes and Its Implication in Cancer Therapy. Front Oncol. 2022 Jan 31; 12:771870.

[19] DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol. 2021 May;17(5):319-334.

[20] Wang X, Li Q, Sui B, Xu M, Pu Z, Qiu T. Schisandrin A from Schisandra chinensis Attenuates Ferroptosis and NLRP3 Inflammasome-Mediated Pyroptosis in Diabetic Nephropathy through Mitochondrial Damage by AdipoR1 Ubiquitination. Oxid Med Cell Longev. 2022 Aug 11; 2022:5411462.

[21] Pei Z, Chen Y, Zhang Y, Zhang S, Wen Z, Chang R, Ni B, Ni Q. Hirsutine mitigates ferroptosis in podocytes of diabetic kidney disease by downregulating the p53/GPX4 signaling pathway. Eur J Pharmacol. 2025 Mar 15; 991:177289.

[22] Zheng Q, Xing J, Li X, Tang X, Zhang D. PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis. Redox Biol. 2024 Dec; 78:103417.

[23] Li SY, Zhao N, Wei D, Pu N, Hao XN, Huang JM, Peng GH, Tao Y. Ferroptosis in the ageing retina: A malevolent fire of diabetic retinopathy. Ageing Res Rev. 2024 Jan; 93:102142.

[24] Wang Y, Song SY, Song Y, Wang Y, Wan ZW, Sun P, Yu XM, Deng B, Zeng KH. Resveratrol Protects Müller Cells Against Ferroptosis in the Early Stage of Diabetic Retinopathy by Regulating the Nrf2/GPx4/PTGS2 Pathway. Mol Neurobiol. 2025 Mar;62(3):3412-3427.

[25] Luo L, Cai Y, Jiang Y, Gong Y, Cai C, Lai D, Jin X, Guan Z, Qiu Q. Pipecolic acid mitigates ferroptosis in diabetic retinopathy by regulating GPX4-YAP signaling. Biomed Pharmacother. 2023 Dec 31; 169:115895.

[26] Wang R, Zhang X, Ye H, Yang X, Zhao Y, Wu L, Liu H, Wen Y, Wang J, Wang Y, Yu M, Ma C, Wang L. Fibroblast growth factor 21 improves diabetic cardiomyopathy by inhibiting ferroptosis via ferritin pathway. Cardiovasc Diabetol. 2024 Nov 2;23(1):394.

[27] Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013 Jan;38(1):23-38. 

[28] Ahmed SAH, Ansari SA, Mensah-Brown EPK, Emerald BS. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin Epigenetics. 2020 Jul 11;12(1):104.

[29] Kesharwani D, Kumar A, Rizvi A, Datta M. miR-539-5p regulates Srebf1 transcription in the skeletal muscle of diabetic mice by targeting DNA methyltransferase 3b. Mol Ther Nucleic Acids. 2022 Aug 13; 29:718-732.

[30] Tóth DM, Szeri F, Ashaber M, Muazu M, Székvölgyi L, Arányi T. Tissue-specific roles of de novo DNA methyltransferases. Epigenetics Chromatin. 2025 Jan 17;18(1):5.

[31] Gowher H, Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions[J]. Biochem Soc Trans, 2018, 46(5): 1191-1202.

[32] Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011 Oct 16;7(12):885-7.

[33] Deng X, Su R, Feng X, Wei M, Chen J. Role of N6-methyladenosine modification in cancer. Curr Opin Genet Dev. 2018 Feb; 48:1-7.

[34] Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol. 2021 Jul 27;14(1):117.

[35] Zhang G, Wu K, Jiang X, Gao Y, Ding D, Wang H, Yu C, Wang X, Jia N, Zhu L. The role of ferroptosis-related non-coding RNA in liver fibrosis. Front Cell Dev Biol. 2024 Dec 9; 12:1517401.

[36] Wang J, Samuels DC, Zhao S, Xiang Y, Zhao YY, Guo Y. Current Research on Non-Coding Ribonucleic Acid (RNA). Genes (Basel). 2017 Dec 5;8(12):366.

[37] Jiang Y, Song S, Liu J, Zhang L, Guo X, Lu J, Li L, Yang C, Fu Q, Zeng B. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension. Front Immunol. 2023 Sep 11; 14:1206452.

[38] Ji Y, Liu S, Zhang Y, Min Y, Wei L, Guan C, Yu H, Zhang Z. Lysine crotonylation in disease: mechanisms, biological functions and therapeutic targets. Epigenetics Chromatin. 2025 Mar 22;18(1):13.

[39] Mallipattu SK, Estrada CC, He JC. The critical role of Krüppel-like factors in kidney disease. Am J Physiol Renal Physiol. 2017 Feb 1;312(2): F259-F265.

[40] Cai S, Zhu H, Chen L, Yu C, Su L, Chen K, Li Y. Berberine Inhibits KLF4 Promoter Methylation and Ferroptosis to Ameliorate Diabetic Nephropathy in Mice. Chem Res Toxicol. 2024 Oct 21;37(10):1728-1737. 

[41] Wang H, Zhao R, Guo C, Jiang S, Yang J, Xu Y, Liu Y, Fan L, Xiong W, Ma J, Peng S, Zeng Z, Zhou Y, Li X, Li Z, Li X, Schmitt DC, Tan M, Li G, Zhou M. Knockout of BRD7 results in impaired spermatogenesis and male infertility. Sci Rep. 2016 Feb 16; 6:21776.

[42] Hernández-Herrador M, Marilina GA, Luisa Hortas M, Carrillo-Lucena S, Caracuel Z, Castilla-Alcalá JA, Martín-García D, Redondo M. Clusterin expression and distribution in spermatozoa as predictor of male fertility. Mol Reprod Dev. 2024 Jul;91(7): e23764.

[43] Xiao Y, Liang Z, Qiao J, Zhu Z, Liu B, Tian Y. BRD7 facilitates ferroptosis via modulating clusterin promoter hypermethylation and suppressing AMPK signaling in diabetes-induced testicular damage. Mol Med. 2024 Jul 12;30(1):100.

[44] Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, Shvedova AA, Philpott CC, Bayir H, Kagan VE. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med. 2019 Mar; 133:153-161.

[45] Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017 Oct 5;171(2):273-285.

[46] Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, Huang B, Shan Z, Liu J, Fan S, Chen J, Zhao F. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med. 2020 Nov 20; 160:552-565.

[47] Wei F, Ruan B, Dong J, Yang B, Zhang G, Kelvin Yeung WK, Wang H, Cao W, Wang Y. Asperosaponin VI inhibition of DNMT alleviates GPX4 suppression-mediated osteoblast ferroptosis and diabetic osteoporosis. J Adv Res. 2024 Dec 6: S2090-1232(24)00554-X.

[48] Wang Y, Zou J, Zhou H. N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne). 2024 Sep 4; 15:1462146.

[49] Luan F, Liu P, Ma H, Yue X, Liu J, Gao L, Liang X, Ma C. Reduced nucleic ZHX2 involves in oncogenic activation of glypican 3 in human hepatocellular carcinoma. Int J Biochem Cell Biol. 2014 Oct; 55:129-35.

[50] Meng W, Li L. ZHX2 inhibits diabetes-induced liver injury and ferroptosis by epigenetic silence of YTHDF2. Nutr Diabetes. 2025 Feb 22;15(1):6.

[51] Lin Y, Shen X, Ke Y, Lan C, Chen X, Liang B, Zhang Y, Yan S. Activation of osteoblast ferroptosis via the METTL3/ASK1-p38 signaling pathway in high glucose and high fat (HGHF)-induced diabetic bone loss. FASEB J. 2022 Mar;36(3): e22147.

[52] Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ, Pichler M. Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ. 2022 Jun;29(6):1094-1106.

[53] Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci. 2024 Nov 15; 357:123092.

[54] Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics. 2023 Jan 10;23(1):33.

[55] Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ. p53 Suppresses Metabolic Stress-Induced Ferroptosis in Cancer Cells. Cell Rep. 2018 Jan 16;22(3):569-575.

[56] Yuan F, Han S, Li Y, Li S, Li D, Tian Q, Feng R, Shao Y, Liang X, Wang J, Lei H, Li X, Duan Y. miR-214-3p attenuates ferroptosis-induced cellular damage in a mouse model of diabetic retinopathy through the p53/SLC7A11/GPX4 axis. Exp Eye Res. 2025 Apr; 253:110299.

[57] Zou HL, Wang Y, Gang Q, Zhang Y, Sun Y. Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017 Jun;255(6):1159-1166.

[58] Zhan D, Zhao J, Shi Q, Lou J, Wang W. 25-hydroxyvitamin D3 inhibits oxidative stress and ferroptosis in retinal microvascular endothelial cells induced by high glucose through down-regulation of miR-93. BMC Ophthalmol. 2023 Jan 13;23(1):22.

[59] Chen E, Yi J, Jiang J, Zou Z, Mo Y, Ren Q, Lin Z, Lu Y, Zhang J, Liu J. Identification and validation of a fatty acid metabolism-related lncRNA signature as a predictor for prognosis and immunotherapy in patients with liver cancer. BMC Cancer. 2022 Oct 4;22(1):1037.

[60] Fang X, Song J, Chen Y, Zhu S, Tu W, Ke B, Wu L. LncRNA SNHG1 knockdown inhibits hyperglycemia induced ferroptosis via miR-16-5p/ACSL4 axis to alleviate diabetic nephropathy. J Diabetes Investig. 2023 Sep;14(9):1056-1069.

[61] Ni T, Huang X, Pan S, Lu Z. Inhibition of the long non-coding RNA ZFAS1 attenuates ferroptosis by sponging miR-150-5p and activates CCND2 against diabetic cardiomyopathy. J Cell Mol Med. 2021 Nov;25(21):9995-10007.

[62] Jin J, Wang Y, Zheng D, Liang M, He Q. A Novel Identified Circular RNA, mmu_mmu_circRNA_0000309, Involves in Germacrone-Mediated Improvement of Diabetic Nephropathy Through Regulating Ferroptosis by Targeting miR-188-3p/GPX4 Signaling Axis. Antioxid Redox Signal. 2022 Apr;36(10-12):740-759.

[63] Haque ME, Jakaria M, Akther M, Cho DY, Kim IS, Choi DK. The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond). 2021 Jan 15;135(1):231-257.

[64] Zhen J, Sheng X, Chen T, Yu H. Histone acetyltransferase Kat2a regulates ferroptosis via enhancing Tfrc and Hmox1 expression in diabetic cardiomyopathy. Cell Death Dis. 2024 Jun 10;15(6):406.

[65] Li F, Ye H, Li L, Chen Q, Lan X, Wu L, Li B, Li L, Guo C, Ashrafizadeh M, Sethi G, Guo J, Wu L. Histone lysine crotonylation accelerates ACSL4-mediated ferroptosis of keratinocytes via modulating autophagy in diabetic wound healing. Pharmacol Res. 2025 Mar; 213:107632.

[66] Wang H, Wang J, Ran Q, Leng Y, Liu T, Xiong Z, Zou D, Yang W. Identification and functional analysis of the hub Ferroptosis-Related gene EZH2 in diabetic kidney disease. Int Immunopharmacol. 2024 May 30; 133:112138.