Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2025, 6(2); doi: 10.25236/AJMC.2025.060206.

Combined CRISPR/Cas12 system and glassy carbon electrode enable detection and analysis of dopamine solution

Author(s)

Hongqu Liang1, Liu Huang1, Peng Yan1, Fa Huang2, Hongchao Zhang2, Qisheng Luo1

Corresponding Author:
Qisheng Luo
Affiliation(s)

1The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China

2Youjiang Medical University for Nationalities, Baise, Guangxi, China.

Abstract

Dopamine (DA) is one of the key neurotransmitters (NTs) in nature and plays a crucial role in the mammalian central nervous system (CNS). Its selective determination in biological fluids is a fundamental need in the field of biomedical research. In this study, a novel electrochemical biosensor was developed, taking advantage of the high selectivity and specificity of the CRISPR/Cas12 system. The aptamer sensor was constructed and characterized using cyclic voltammetry with a glassy carbon electrode (GCE), and its conductivity was demonstrated by electrochemical impedance spectroscopy (EIS). The sensor exhibited a good linear response in the range of 1–10 μM, with a detection limit of 4.98 μmol/L. Compared to conventional methods, the electrochemical sensor developed in this study shows high sensitivity and excellent selectivity. The developed sensor was applied to the determination in analogous samples, yielding satisfactory recovery results.

Keywords

CRISPR/Cas12 system, glassy carbon electrode, dopamine assay, electrochemical biosensor

Cite This Paper

Hongqu Liang, Liu Huang, Peng Yan, Fa Huang, Hongchao Zhang, Qisheng Luo. Combined CRISPR/Cas12 system and glassy carbon electrode enable detection and analysis of dopamine solution. Academic Journal of Materials & Chemistry (2025), Vol. 6, Issue 2: 43-50. https://doi.org/10.25236/AJMC.2025.060206.

References

[1] TOBLER P N, FIORILLO C D, SCHULTZ W. Adaptive coding of reward value by dopamine neurons[J/OL]. Science (New York, N.Y.), 2005, 307(5715): 1642-1645. DOI:10.1126/science.1105370.

[2] ALWARAPPAN S, LIU G, LI C Z. Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors[J/OL]. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6(1): 52-57. DOI:10.1016/j.nano.2009.06.003.

[3] SAJID M, NAZAL M K, MANSHA M, et al. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review[J/OL]. TrAC Trends in Analytical Chemistry, 2016, 76: 15-29. DOI:10.1016/j.trac.2015.09.006.

[4] LOVE T M. Oxytocin, motivation and the role of dopamine[J/OL]. Pharmacology, Biochemistry, and Behavior, 2014, 119: 49-60. DOI:10.1016/j.pbb.2013.06.011.

[5] BARANWAL A, CHANDRA P. Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models[J/OL]. Biosensors and Bioelectronics, 2018, 121: 137-152. DOI:10.1016/j.bios.2018.09.002.

[6] HUANG Q, ZHANG H, HU S, et al. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film[J/OL]. Biosensors and Bioelectronics, 2014, 52: 277-280. DOI:10.1016/j.bios.2013.09.003.

[7] DU J, YUE R, REN F, et al. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid[J/OL]. Biosensors and Bioelectronics, 2014, 53: 220-224. DOI:10.1016/j.bios.2013.09.064.

[8] NOROOZIFAR M, KHORASANI-MOTLAGH M, AKBARI R, et al. Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube[J/OL]. Biosensors and Bioelectronics, 2011, 28(1): 56-63. DOI:10.1016/j.bios.2011.06.042.

[9] MERCANTE L A, PAVINATTO A, IWAKI L E O, et al. Electrospun Polyamide 6/Poly(allylamine hydrochloride) Nanofibers Functionalized with Carbon Nanotubes for Electrochemical Detection of Dopamine[J/OL]. ACS Applied Materials & Interfaces, 2015, 7(8): 4784-4790. DOI:10.1021/am508709c.

[10] HSU M S, CHEN Y L, LEE C Y, et al. Gold Nanostructures on Flexible Substrates as Electrochemical Dopamine Sensors[J/OL]. ACS Applied Materials & Interfaces, 2012, 4(10): 5570-5575. DOI:10.1021/am301452b.

[11] LEE T, CAI L X, LELYVELD V S, et al. Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling[J/OL]. Science, 2014, 344(6183): 533-535. DOI:10.1126/science.1249380.

[12] LIN Y, CHEN C, WANG C, et al. Silver nanoprobe for sensitive and selective colorimetric detection of dopaminevia robust Ag–catechol interaction[J/OL]. Chem. Commun., 2011, 47(4): 1181-1183. DOI:10.1039/C0CC03700A.

[13] CHEN J L, YAN X P, MENG K, et al. Graphene Oxide Based Photoinduced Charge Transfer Label-Free Near-Infrared Fluorescent Biosensor for Dopamine[J/OL]. Analytical Chemistry, 2011, 83(22): 8787-8793. DOI:10.1021/ac2023537.

[14] CARRERA V, SABATER E, VILANOVA E, et al. A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures[J/OL]. Journal of Chromatography B, 2007, 847(2): 88-94. DOI:10.1016/j.jchromb.2006.09.032.

[15] JIANG F, YUE R, DU Y, et al. A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing[J/OL]. Biosensors and Bioelectronics, 2013, 44: 127-131. DOI:10.1016/j.bios.2013.01.003.

[16] HORVATH P, BARRANGOU R. CRISPR/Cas, the Immune System of Bacteria and Archaea[J/OL]. Science, 2010, 327(5962): 167-170. DOI:10.1126/science.1179555.

[17] TANG Y, FU Y. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing[J/OL]. Cell & Bioscience, 2018, 8(1): 59. DOI:10.1186/s13578-018-0255-x.

[18] KONERMANN S, BRIGHAM M D, TREVINO A E, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J/OL]. Nature, 2015, 517(7536): 583-588. DOI:10.1038/ nature14136.

[19] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J/OL]. Science, 2018, 360(6387): 436-439. DOI:10.1126/science.aar6245.

[20] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J/OL]. Science, 2017, 356(6336): 438-442. DOI:10.1126/science.aam9321.

[21] VAN DONGEN J E, BERENDSEN J T W, STEENBERGEN R D M, et al. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities[J/OL]. Biosensors and Bioelectronics, 2020, 166: 112445. DOI:10.1016/j.bios.2020.112445.

[22] WANG M, ZHANG R, LI J. CRISPR/cas systems redefine nucleic acid detection: Principles and methods[J/OL]. Biosensors and Bioelectronics, 2020, 165: 112430. DOI:10.1016/j.bios.2020.112430.