Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2025, 6(2); doi: 10.25236/AJMC.2025.060210.

Research and Application of Silicon Nanoscale Heat Dissipation Materials

Author(s)

Gaoyuan Lang

Corresponding Author:
Gaoyuan Lang
Affiliation(s)

School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing , China

Abstract

In this paper, a review of silicon nanoscale heat dissipation materials is presented. The preparation methods of nano-silicon heat dissipation materials are introduced, including dry preparation (vapor phase method, electric arc method) and wet preparation (sol-gel method, precipitation method, microemulsion method). The factors affecting the heat dissipation efficiency of nano silicon materials are analyzed. The advantages of nano-silicon as a heat dissipation material, such as high heat dissipation efficiency, good stability, processability, and environmental protection and energy saving, are introduced. The applications of nano-silicon heat dissipation materials in various fields in real life are described.

Keywords

Nano-silicon, Heat dissipation material, Preparation method, Characteristic, Application field

Cite This Paper

Gaoyuan Lang. Research and Application of Silicon Nanoscale Heat Dissipation Materials. Academic Journal of Materials & Chemistry (2025), Vol. 6, Issue 2: 73-81. https://doi.org/10.25236/AJMC.2025.060210.

References

[1] GONZALEZ-ZALBA M F, SHEVCHENKO S N, BARRAUD S, et al. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor [J]. Nano Letters, 2016, 16(3): 1614-9.

[2] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% [J]. Nature Energy, 2017, 2(5).

[3] BANDARU P, PICHANUSAKORN P. An outline of the synthesis and properties of silicon nanowires [J]. Semiconductor science and technology, 2010, 25(2): 024003.

[4] OTTO M, ALGASINGER M, BRANZ H, et al. Black silicon photovoltaics [J]. Advanced optical materials, 2015, 3(2): 147-64.

[5] HASAN M, HUQ M F, MAHMOOD Z H. A review on electronic and optical properties of silicon nanowire and its different growth techniques [J]. SpringerPlus, 2013, 2: 1-9.

[6] LEONARDI A A, FARO M J L, IRRERA A. Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review [J]. Nanomaterials, 2021, 11(2).

[7] HUANG Z, GEYER N, WERNER P, et al. Metal‐assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gösele [J]. Advanced materials, 2011, 23(2): 285-308.

[8] SCHMIDT V, WITTEMANN J V, SENZ S, et al. Silicon nanowires: a review on aspects of their growth and their electrical properties [J]. Advanced Materials, 2009, 21(25-26): 2681-702.

[9] DUSSART R, TILLOCHER T, LEFAUCHEUX P, et al. Plasma cryogenic etching of silicon: from the early days to today's advanced technologies [J]. Journal of Physics D: Applied Physics, 2014, 47(12): 123001.

[10] RAMANUJAM J, SHIRI D, VERMA A. Silicon nanowire growth and properties: a review [J]. Materials Express, 2011, 1(2): 105-26.

[11] SPRUNG C, HEIMFARTH J, ERLER J, et al. Hydrogen terminated silicon nanopowders: gas phase synthesis, oxidation behaviour, and Si-H reactivity [J]. Silicon, 2015, 7: 31-42.

[12] SHAH S A, CUI S. Preparation of silicon nanomaterials by arc discharge [J]. Materials Science in Semiconductor Processing, 2015, 40: 491-500.

[13] PUSCASU E, SACARESCU L, LUPU N, et al. Iron oxide-silica nanocomposites yielded by chemical route and sol–gel method [J]. Journal of Sol-Gel Science and Technology, 2016, 79: 457-65.

[14] QIAO X G, DUGAS P Y, VEYRE L, et al. l-Arginine-Catalyzed Synthesis of Nanometric Organosilica Particles through a Waterborne Sol–Gel Process and Their Porous Structure Analysis [J]. Langmuir, 2018, 34(23): 6784-96.

[15] JAL P, SUDARSHAN M, SAHA A, et al. Synthesis and characterization of nanosilica prepared by precipitation method [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240(1-3): 173-8.

[16] CLAIDEN P, KNOWLES G, LIU F, et al. Modelling of nano-filler reinforcement, filler strength and experimental results of nanosilica composites made by a precipitation method [J]. Computational materials science, 2014, 94: 27-34.

[17] YAN S, ZHANG H, WANG F, et al. Analysis of thermophysical characteristic of SiO2/water nanofluid and heat transfer enhancement with field synergy principle [J]. Journal of Renewable and Sustainable Energy, 2018, 10(6).

[18] ZHU Y F, ZHOU L, PAN C J, et al. Fabrication of silicon nanorod arrays via a facile metal-assisted chemical etching method [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 5833-8.

[19] ROPER C S, GUTéS A, CARRARO C, et al. Single crystal silicon nanopillars, nanoneedles and nanoblades with precise positioning for massively parallel nanoscale device integration [J]. Nanotechnology, 2012, 23(22).

[20] LIU X, COXON P R, PETERS M, et al. Black silicon: fabrication methods, properties and solar energy applications [J]. Energy Environ Sci, 2014, 7(10): 3223-63.

[21] CHOI D-G, YU H K, JANG S G, et al. Colloidal lithographic nanopatterning via reactive ion etching [J]. Journal of the American Chemical Society, 2004, 126(22): 7019-25.

[22] NANOWIRES C S. A Laser Ablation Method for the Synthesis of [J]. Science, 1998, 279: 208-.

[23] WU Y, YANG P. Direct observation of vapor− liquid− solid nanowire growth [J]. Journal of the American Chemical Society, 2001, 123(13): 3165-6.

[24] GHOSH R, GIRI P, IMAKITA K, et al. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals [J]. Nanotechnology, 2014, 25(4): 045703.

[25] ZAMFIR M R, NGUYEN H T, MOYEN E, et al. Silicon nanowires for Li-based battery anodes: a review [J]. Journal of Materials Chemistry A, 2013, 1(34): 9566-86.

[26] WANG N, ZHANG Y, TANG Y, et al. SiO2-enhanced synthesis of Si nanowires by laser ablation [J]. Applied physics letters, 1998, 73(26): 3902-4.

[27] SCHUBERT L, WERNER P, ZAKHAROV N, et al. Silicon nanowhiskers grown on< 111> Si substrates by molecular-beam epitaxy [J]. Applied Physics Letters, 2004, 84(24): 4968-70.

[28]DHARA S, GIRI P. Effect of growth temperature on the catalyst-free growth of long silicon nanowires using radio frequency magnetron sputtering [J]. International Journal of Nanoscience, 2011, 10(01n02): 13-7.

[29] LI Y, YANG X, YANG Y, et al. Optical nanoheating of resonant silicon nanoparticles [J]. Optics Express, 2019, 27(21): 30971-8.

[30] VERDIER M, TERMENTZIDIS K, LACROIX D. Crystalline-amorphous silicon nano-composites: Nano-pores and nano-inclusions impact on the thermal conductivity [J]. Journal of Applied Physics, 2016, 119(17).

[31] CHEN G, YU W, SINGH D, et al. Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids [J]. Journal of Nanoparticle research, 2008, 10: 1109-14.

[32] SAIDUR R, LEONG K, MOHAMMED H A. A review on applications and challenges of nanofluids [J]. Renewable and sustainable energy reviews, 2011, 15(3): 1646-68.

[33] KEBLINSKI P, PHILLPOT S, CHOI S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J]. International journal of heat and mass transfer, 2002, 45(4): 855-63.

[34] CARDONA-CASTRO M, MORALES-SáNCHEZ A, LICEA-JIMéNEZ L, et al. Si-nanocrystal-based nanofluids for nanothermometry [J]. Nanotechnology, 2016, 27(23): 235502.

[35] CHON C, KIHM K. Thermal conductivity enhancement of nanofluids by Brownian motion [J]. Transactions-American Society of Mechanical Engineers Journal of Heat Transfer, 2005, 127(8): 810.

[36] DARVANJOOGHI M H K, ESFAHANY M N. Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid [J]. International Communications in Heat and Mass Transfer, 2016, 77: 148-54.

[37] PANG C, JUNG J-Y, LEE J W, et al. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles [J]. International Journal of Heat and Mass Transfer, 2012, 55(21-22): 5597-602.

[38] THISSANDIER F, LE COMTE A, CROSNIER O, et al. Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications [J]. Electrochemistry Communications, 2012, 25: 109-11.

[39] AKŠAMIJA Z. Numerical Study of Thermal Dissipation Processes in Silicon [J]. B&H Electrical Engineering, 14(s1): 5-13.

[40] SHAO M, MA D D D, LEE S T. Silicon nanowires–synthesis, properties, and applications [J]. European Journal of Inorganic Chemistry, 2010, 2010(27): 4264-78.

[41] SCHMIDT V, WITTEMANN J, GOSELE U. Growth, thermodynamics, and electrical properties of silicon nanowires [J]. Chemical reviews, 2010, 110(1): 361-88.

[42] RAHMANI M, ZAïBI M-A. The Notability of Silicon Nanowires in Optoelectronic, Environment and Health [J]. Silicon, 2024, 16(15): 5525-47.

[43] SALHI B, HOSSAIN M, MUKHAIMER A, et al. Nanowires: a new pathway to nanotechnology-based applications [J]. Journal of electroceramics, 2016, 37: 34-49.

[44] DING P, SHAO L, WANG J, et al. Enhanced light extraction with silicon nanoantenna arrays for white light LED applications [J]. Optical and Quantum Electronics, 2017, 49: 1-14.