Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2025, 6(3); doi: 10.25236/AJMC.2025.060301.

Toward Practical Silicon Anodes: A Review of Composite Modification Strategies in Lithium-Ion Batteries

Author(s)

Shuai Wang

Corresponding Author:
Shuai Wang
Affiliation(s)

School of Materials Science and Engineering, Shandong Jianzhu University, Jinan, 250101, China

Abstract

In response to the increasing global demand for clean energy, lithium-ion batteries have been widely applied as one of the most efficient energy storage systems. Among various anode materials, silicon has attracted considerable attention due to its extremely high theoretical capacity. Nevertheless, its practical application is limited by severe volume expansion during the charge-discharge process, poor intrinsic electrical conductivity, and the instability of the solid electrolyte interphase. To overcome these issues, various compositing strategies have been developed. In these approaches, silicon is combined with conductive matrices, structural frameworks, or polymeric binders. These components help to improve mechanical robustness, enhance electrical conductivity, and stabilize the electrode interface. Therefore, a large number of studies have focused on the design and synthesis of silicon-based composite anode materials. This review summarizes recent developments in this field, with an emphasis on four major types of composites: Si-C, Si-metal, Si-metal oxide, and Si-polymer systems. The structural characteristics, functional roles, and electrochemical properties of each type are discussed in detail. In addition, this work also provides insights into future research directions and practical challenges of silicon-based anodes in advanced lithium-ion batteries.

Keywords

Lithium-Ion Batteries; Silicon Anodes; Composite Strategies

Cite This Paper

Shuai Wang. Toward Practical Silicon Anodes: A Review of Composite Modification Strategies in Lithium-Ion Batteries. Academic Journal of Materials & Chemistry (2025), Vol. 6, Issue 3: 1-18. https://doi.org/10.25236/AJMC.2025.060301.

References

[1] D’Silva TC, Isha A, Chandra R, Vijay VK, Subbarao PMV, Kumar R, et al. Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – a state-of-the-art review. Renew Sustain Energy Rev 2021;151:111536. https://doi.org/10.1016/j.rser.2021.111536.

[2] Kumar A, Yau Y-Y, Ogita S, Scheibe R, editors. Climate change, photosynthesis and advanced biofuels: the role of biotechnology in the production of value-added plant bio-products. Singapore: Springer Singapore; 2020. https://doi.org/10.1007/978-981-15-5228-1.

[3] Olabi AG, Wilberforce T, Abdelkareem MA. Fuel cell application in the automotive industry and future perspective. Energy 2021;214:118955. https://doi.org/10.1016/j.energy.2020.118955.

[4] Li W, Zhang J, Wang W. Progress on nano- to atom-size dual-metal-site catalysts (DMSC) for enhanced dry reforming of methane with carbon dioxide. Coord Chem Rev 2024;503:215638. https://doi.org/10.1016/j.ccr.2023.215638.

[5] Khan N, Dilshad S, Khalid R, Kalair AR, Abas N. Review of energy storage and transportation of energy. Energy Storage 2019;1:e49. https://doi.org/10.1002/est2.49.

[6] Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H. A review on global solar energy policy. Renew Sustain Energy Rev 2011;15:2149–63. https://doi.org/10.1016/j.rser.2011.01.007.

[7] Luo X, Wang J, Dooner M, Clarke J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 2015;137:511–36. https://doi.org/10.1016/j.apenergy.2014.09.081.

[8] Huang X, Yang J, Mao S, Chang J, Hallac PB, Fell CR, et al. Controllable synthesis of hollow si anode for long‐cycle‐life lithium‐ion batteries. Adv Mater 2014;26:4326–32. https://doi. org/10.1002/adma.201400578.

[9] Li M, Lu J, Chen Z, Amine K. 30 years of lithium‐ion batteries. Adv Mater 2018;30:1800561. https://doi.org/10.1002/adma.201800561.

[10] Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 2020;49:1569–614. https://doi.org/10.1039/C7CS00863E.

[11] Yi T-F, Zhu Y-R, Tao W, Luo S, Xie Y, Li X-F. Recent advances in the research of MLi2Ti6O14 (M = 2Na, sr, ba, pb) anode materials for li-ion batteries. J Power Sources 2018;399:26–41. https://doi.org/10.1016/j.jpowsour.2018.07.086.

[12] Li Q, Xu C, Yang L, Pei K, Zhao Y, Liu X, et al. Pb/C composite with spherical pb nanoparticles encapsulated in carbon microspheres as a high-performance anode for lithium-ion batteries. ACS Appl Energy Mater 2020;3:7416–26. https://doi.org/10.1021/acsaem.0c00812.

[13] Liu X, Wu X-Y, Chang B, Wang K-X. Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater 2020;30:146–69. https://doi.org/10.1016/j.ensm.2020.05.010.

[14] Xin F, Whittingham MS. Challenges and development of tin-based anode with high volumetric capacity for li-ion batteries. Electrochem Energy Rev 2020;3:643–55. https://doi.org/10.1007/s41918-020-00082-3.

[15] Wen CJ, Huggins RA. Chemical diffusion in intermediate phases in the lithium-silicon system. J Solid State Chem 1981;37:271–8. https://doi.org/10.1016/0022-4596(81)90487-4.

[16] Choi J, Kim G, Kim SY. Silicon graphite composite anode degradation: effects of silicon ratio, current density, and temperature. Energy Technol 2023;11:2201444. https://doi. org/10.1002/ente. 202201444.

[17] Sun L, Liu Y, Shao R, Wu J, Jiang R, Jin Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater 2022;46:482–502. https://doi. org/10.1016/j.ensm.2022.01.042.

[18] Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater 2018;15:422–46. https://doi. org/10.1016/j.ensm.2018.07.014.

[19] Jiang J, Zhang H, Zhu J, Li L, Liu Y, Meng T, et al. Putting nanoarmors on yolk–shell si@C nanoparticles: A reliable engineering way to build better si-based anodes for li-ion batteries. ACS Appl Mater Interfaces 2018;10:24157–63. https://doi.org/10.1021/acsami.8b07737.

[20] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced li-ion batteries: A review. Energy Environ Sci 2011;4:3243. https://doi.org/10.1039/c1ee01598b.

[21] Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008;3:31–5. https://doi. org/10. 1038/nnano.2007.411.

[22] Salah M, Murphy P, Hall C, Francis C, Kerr R, Fabretto M. Pure silicon thin-film anodes for lithium-ion batteries: a review. J Power Sources 2019;414:48–67. https://doi. org/10.1016/j. jpowsour.2018.12.068.

[23] Li X, Wu M, Feng T, Xu Z, Qin J, Chen C, et al. Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries. RSC Adv 2017;7:48286–93. https://doi. org/10.1039/C7RA09818A.

[24] Zhou P, Xiao P, Pang L, Jiang Z, Hao M, Li Y, et al. High‐performance yolk‐shell structured silicon‐carbon composite anode preparation via one‐step gas‐phase deposition and etching technique. Adv Funct Mater 2025;35:2406579. https://doi.org/10.1002/adfm.202406579.

[25] Pei Y, Wang Y, Chang A-Y, Liao Y, Zhang S, Wen X, et al. Nanofiber-in-microfiber carbon/silicon composite anode with high silicon content for lithium-ion batteries. Carbon 2023;203:436–44. https://doi.org/10.1016/j.carbon.2022.11.100.

[26] Xue X, Liu X, Lou B, Yang Y, Shi N, Wen F, et al. The mitigation of pitch-derived carbon with different structures on the volume expansion of silicon in si/C composite anode. J Energy Chem 2023;84:292–302. https://doi.org/10.1016/j.jechem.2023.04.004.

[27] Song H, Wang HX, Lin Z, Jiang X, Yu L, Xu J, et al. Highly connected silicon–copper alloy mixture nanotubes as high‐rate and durable anode materials for lithium‐ion batteries. Adv Funct Mater 2016;26:524–31. https://doi.org/10.1002/adfm.201504014.

[28] Xu K, Zhang Z, Su W, Wei Z, Zhong G, Wang C, et al. Alumina coated nano silicon synthesized by aluminothermic reduction as anodes for lithium ion batteries. Funct Mater Lett 2017;10:1650073. https://doi.org/10.1142/S1793604716500739.

[29] Balqis F, Eldona C, Laksono BT, Aini Q, Hamid FH, Wasisto HS, et al. Conductive polymer frameworks in silicon anodes for advanced lithium-ion batteries. ACS Appl Polym Mater 2023;5:4933–52. https://doi.org/10.1021/acsapm.3c00531.

[30] Zhang B, Liu D, Xie H, Wang D, Hu C, Dai L. In-situ construction of chemically bonded conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries. J Power Sources 2022;539:231591. https://doi.org/10.1016/j.jpowsour.2022.231591.

[31] Yu L, Liu J, He S, Huang C, Gan L, Gong Z, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries. J Phys Chem Solids 2019;135:109113. https://doi. org/10.1016/j.jpcs.2019.109113.

[32] Ren X, Huang T, Yu A. Carboxymethylated tamarind polysaccharide gum as a green binder for silicon-based lithium-ion battery anodes. Electrochem Commun 2022;136:107241. https://doi. org/10.1016/j.elecom.2022.107241.

[33] Zuo P, Yin G, Ma Y. Electrochemical stability of silicon/carbon composite anode for lithium ion batteries. Electrochimica Acta 2007;52:4878–83. https://doi.org/10.1016/j.electacta.2006.12.061.

[34] Shen X, Tian Z, Fan R, Shao L, Zhang D, Cao G, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem 2018;27:1067–90. https://doi. org/10.1016/j.jechem.2017.12.012.

[35] Xu Z, Du J, Feng C, He J, Li T, Jia H, et al. Constructing a buffer macroporous architecture on silicon/carbon anode for high-performance lithium-ion battery. J Mater Sci Mater Electron 2024;35:531. https://doi.org/10.1007/s10854-024-12237-9.

[36] Wang A, Liu F, Wang Z, Liu X. Self-assembly of silicon/carbon hybrids and natural graphite as anode materials for lithium-ion batteries. RSC Adv 2016;6:104995–5002. https://doi. org/10. 1039/C6RA20131H.

[37] Ko M, Chae S, Ma J, Kim N, Lee H-W, Cui Y, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat Energy 2016;1:16113. https://doi. org/10.1038/nenergy.2016.113.

[38] Lv D, Yang L, Song R, Yuan H, Luan J, Liu J, et al. A hierarchical porous hard carbon@si@soft carbon material for advanced lithium-ion batteries. J Colloid Interface Sci 2025;678:336–42. https://doi.org/10.1016/j.jcis.2024.09.009.

[39] Li S, Qin X, Zhang H, Wu J, He Y-B, Li B, et al. Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries. Electrochem Commun 2014;49:98–102. https://doi.org/10.1016/j.elecom.2014.10.013.

[40] Wang D, Kong L, Zhang F, Liu A, Huang H, Liu Y, et al. Porous carbon-coated silicon composites for high performance lithium-ion batterie anode. Appl Surf Sci 2024;661:160076. https://doi. org/10.1016/j.apsusc.2024.160076.

[41] Chen C, Zheng R, Ye L, Yue F, Cheng J, Wang J, et al. In situ synthesis of vertical graphene on porous si microparticle composite for high-performance anode material. Electrochimica Acta 2024;497:144617. https://doi.org/10.1016/j.electacta.2024.144617.

[42] Zou X, Li M, Li H, Cao G, Jiang Q, Duan R, et al. Three-dimensional CNTs boosting the conductive confinement structure of silicon/carbon anodes in lithium-ion batteries. Chem Eng J 2024;498:155573. https://doi.org/10.1016/j.cej.2024.155573.

[43] Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, et al. Carbon-coated si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries. ACS Appl Mater Interfaces 2013;5:21–5. https://doi.org/10.1021/am3027597.

[44] Zhou R, Fan R, Tian Z, Zhou Y, Guo H, Kou L, et al. Preparation and characterization of core–shell structure si/C composite with multiple carbon phases as anode materials for lithium ion batteries. J Alloys Compd 2016;658:91–7. https://doi.org/10.1016/j.jallcom.2015.10.217.

[45] Shi L, Wang W, Wang A, Yuan K, Jin Z, Yang Y. Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. J Mater Chem A 2015;3:18190–7. https://doi.org/10.1039/C5TA03974F.

[46] Shi H, Zhang W, Wang D, Wang J, Wang C, Xiong Z, et al. Facile preparation of silicon/carbon composite with porous architecture for advanced lithium-ion battery anode. J Electroanal Chem 2023;937:117427. https://doi.org/10.1016/j.jelechem.2023.117427.

[47] Ni C, Xia C, Liu W, Xu W, Shan Z, Lei X, et al. Effect of graphene on the performance of silicon–carbon composite anode materials for lithium-ion batteries. Materials 2024;17:754. https://doi. org/10.3390/ma17030754.

[48] Kang HE, Ko J, Song SG, Yoon YS. Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of si-based composite anodes for lithium-ion batteries. Carbon 2024;219:118800. https://doi.org/10.1016/j.carbon.2024.118800.

[49] Yang S, Li B, Yang Z, Song Y, Wang G, Yu F. Silicon-doped multilayer graphene as anode material for secondary batteries. Appl Surf Sci 2025;681:161483. https://doi.org/10.1016/j.apsusc.2024.161483.

[50] Sekar S, Aqueel Ahmed AT, Kim DY, Lee S. One-pot synthesized biomass C-si nanocomposites as an anodic material for high-performance sodium-ion battery. Nanomaterials 2020;10:1728. https://doi.org/10.3390/nano10091728.

[51] Su H, Li X, Liu C, Shang Y, Liu H. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes. Chem Eng J 2023;451:138394. https://doi.org/10.1016/j.cej.2022.138394.

[52] Zhang M, Li J, Sun C, Wang Z, Li Y, Zhang D. Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. J Alloys Compd 2023;932:167687. https://doi.org/10.1016/j.jallcom.2022.167687.

[53] Qiao Y, Hu Y, Qian Z, Qu M, Liu Z. An innovative strategy for constructing multicore yolk-shell si/C anodes for lithium-ion batteries. J Colloid Interface Sci 2025;684:678–89. https://doi. org/10.1016/j.jcis.2025.01.078.

[54] Lee JS, Jo BS, Park J-S, Cho JS. Pitch-derived C coated three-dimensional CNTs/reduced graphene oxide microsphere encapsulating si nanoparticles as anodes for lithium-ion batteries. Electrochimica Acta 2025;512:145440. https://doi.org/10.1016/j.electacta.2024.145440.

[55] Zhang Z, Wang Y, Ren W, Tan Q, Chen Y, Li H, et al. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high‐performance anodes of lithium ion batteries. Angew Chem Int Ed 2014;53:5165–9. https://doi.org/10.1002/anie.201310412.

[56] Yu P, Li Z, Zhang D, Xiong Q, Yu J, Zhi C. Hierarchical yolk‐shell silicon/carbon anode materials enhanced by vertical graphene sheets for commercial lithium‐ion battery applications. Adv Funct Mater 2025;35:2413081. https://doi.org/10.1002/adfm.202413081.

[57] Yu Y, Zhang Q, Teng N, Liu Y. Innovative design of silicon-core mesoporous carbon composite for high performance anode material in advanced lithium-ion batteries. J Alloys Compd 2024;989:174423. https://doi.org/10.1016/j.jallcom.2024.174423.

[58] Nuhu BA, Bamisile O, Adun H, Abu UO, Cai D. Effects of transition metals for silicon-based lithium-ion battery anodes: a comparative study in electrochemical applications. J Alloys Compd 2023;933:167737. https://doi.org/10.1016/j.jallcom.2022.167737.

[59] Zhang X, Wang L, Zheng T, Lam K. Synthesis, electrochemistry, and thermal stability of high‐energy ball‐milled silicon‐based alloy anodes in lithium‐ion batteries**. Batter Supercaps 2023;6:e202200495. https://doi.org/10.1002/batt.202200495.

[60] Nazer NS, Denys RV, Andersen HF, Arnberg L, Yartys VA. Nanostructured magnesium silicide Mg2Si and its electrochemical performance as an anode of a lithium ion battery. J Alloys Compd 2017;718:478–91. https://doi.org/10.1016/j.jallcom.2017.05.163.

[61] Adegoke TE, Abdul Ahad S, Bangert U, Geaney H, Ryan KM. Solution processable si/ge heterostructure NWs enabling anode mass reduction for practical full-cell li-ion batteries. Nanoscale Adv 2023;5:6514–23. https://doi.org/10.1039/D3NA00648D.

[62] Stokes K, Boonen W, Geaney H, Kennedy T, Borsa D, Ryan KM. Tunable core–shell nanowire active material for high capacity li-ion battery anodes comprised of PECVD deposited aSi on directly grown ge nanowires. ACS Appl Mater Interfaces 2019;11:19372–80. https://doi.org/10.1021/acsami.9b03931.

[63] Oh S-Y, Imagawa H, Itahara H. Si-based nanocomposites derived from layered CaSi2 : influence of synthesis conditions on the composition and anode performance in li ion batteries. J Mater Chem A 2014;2:12501–6. https://doi.org/10.1039/C4TA01318B.

[64] Xi F, Zhang Z, Wan X, Li S, Ma W, Chen X, et al. High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries n.d.

[65] Wang J-T, Lu S-G, Wang Y, Huang B, Yang J-Y, Tan A. Improvement of cycle behavior of si/sn anode composite supported by stable si–O–C skeleton. Rare Met 2022;41:1647–51. https://doi. org/10.1007/s12598-014-0377-1.

[66] Yin J, Xu Z, Xiao Z, Shao H, Wang J. Photo/electrochemical synthesis of si@sn microsphere composites with excellent electrochemical lithium storage. J Alloys Compd 2022;900:163438. https://doi.org/10.1016/j.jallcom.2021.163438.

[67] Galashev AY, Vorob’ev AS. First principle modeling of a silicene-aluminum composite anode for lithium ion batteries. J Phys Chem Solids 2023;181:111491. https://doi.org/10.1016/j.jpcs.2023.111491.

[68] Kawaura H, Suzuki R, Nagasako N, Oh-ishi K. Scalable synthesis of porous silicon electrodes for lithium-ion batteries via acid etching of atomized al–si alloy powders. J Power Sources 2024;610:234739. https://doi.org/10.1016/j.jpowsour.2024.234739.

[69] Suh S, Choi H, Eom K, Kim H-J. Enhancing the electrochemical properties of a si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries. J Alloys Compd 2020;827:154102. https://doi.org/10.1016/j.jallcom.2020.154102.

[70] Ohta R, Gerile N, Kaga M, Kambara M. Composite si–ni nanoparticles produced by plasma spraying physical vapor deposition for negative electrode in li-ion batteries. Nanotechnology 2021;32:265703. https://doi.org/10.1088/1361-6528/abef2b.

[71] Jia H, Stock C, Kloepsch R, He X, Badillo JP, Fromm O, et al. Facile synthesis and lithium storage properties of a porous NiSi2 /si/carbon composite anode material for lithium-ion batteries. ACS Appl Mater Interfaces 2015;7:1508–15. https://doi.org/10.1021/am506486w.

[72] Avila Cardenas A, Beaudhuin M, Nguyen LHB, Herlin-Boime N, Haon C, Monconduit L. An optimized electrically conductive si-fe matrix to boost the performance of si electrodes in li-ion batteries. Energy Storage Mater 2025;75:104086. https://doi.org/10.1016/j.ensm.2025.104086.

[73] Ruttert M, Siozios V, Winter M, Placke T. Mechanochemical synthesis of fe–si-based anode materials for high-energy lithium ion full-cells. ACS Appl Energy Mater 2020;3:743–58. https://doi.org/10.1021/acsaem.9b01926.

[74] Kumar P, Berhaut CL, Zapata Dominguez D, De Vito E, Tardif S, Pouget S, et al. Nano‐architectured composite anode enabling long‐term cycling stability for high‐capacity lithium‐ion batteries. Small 2020;16:1906812. https://doi.org/10.1002/smll.201906812.

[75] Stokes K, Geaney H, Sheehan M, Borsa D, Ryan KM. Copper silicide nanowires as hosts for amorphous si deposition as a route to produce high capacity lithium-ion battery anodes. Nano Lett 2019;19:8829–35. https://doi.org/10.1021/acs.nanolett.9b03664.

[76] Jiang S, Cheng J, Nayaka GP, Dong P, Zhang Y, Xing Y, et al. Efficient electrochemical synthesis of Cu3Si/si hybrids as negative electrode material for lithium-ion battery. J Alloys Compd 2024;998:174996. https://doi.org/10.1016/j.jallcom.2024.174996.

[77] Lee P, Tahmasebi MH, Ran S, Boles ST, Yu DYW. Leveraging titanium to enable silicon anodes in lithium‐ion batteries. Small 2018;14:1802051. https://doi.org/10.1002/smll.201802051.

[78] Wang L, Niu Y, Liu H, Xi F, Yu J, Li S, et al. Preparation of si/TiSi2 as high-performance anode material for lithium-ion batteries by molten salt electrolysis. J Alloys Compd 2024;1008:176597. https://doi.org/10.1016/j.jallcom.2024.176597.

[79] Xu J, Jin M, Shi X, Li Q, Gan C, Yao W. Preparation of TiSi2 powders with enhanced lithium-ion storage via chemical oven self-propagating high-temperature synthesis. Nanomaterials 2021;11:2279. https://doi.org/10.3390/nano11092279.

[80] Domi Y, Usui H, Takaishi R, Sakaguchi H. Lithiation and delithiation reactions of binary silicide electrodes in an ionic liquid electrolyte as novel anodes for lithium‐ion batteries. ChemElectroChem 2019;6:581–9. https://doi.org/10.1002/celc.201801088.

[81] Stokes K, Flynn G, Geaney H, Bree G, Ryan KM. Axial si–ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett 2018;18:5569–75. https://doi.org/10.1021/acs.nanolett.8b01988.

[82] Kim H, Son Y, Park C, Lee M-J, Hong M, Kim J, et al. Germanium silicon alloy anode material capable of tunable overpotential by nanoscale si segregation. Nano Lett 2015;15:4135–42. https://doi.org/10.1021/acs.nanolett.5b01257.

[83] Stokes K, Geaney H, Flynn G, Sheehan M, Kennedy T, Ryan KM. Direct synthesis of alloyed si 1– x  ge x  nanowires for performance-tunable lithium ion battery anodes. ACS Nano 2017;11:10088–96. https://doi.org/10.1021/acsnano.7b04523.

[84] Liu Y, Zhong Y, Zeng Z, Zhang P, Zhang H, Zhang Z, et al. Scalable synthesis of a porous micro si/si-ti alloy anode for lithium-ion battery from recovery of titanium-blast furnace slag. ACS Appl Mater Interfaces 2023;15:54539–49. https://doi.org/10.1021/acsami.3c13643.

[85] Ma Q, Zhao Y, Hu Z, Qu J, Zhao Z, Xie H, et al. Electrochemically converting micro-sized industrial si/FeSi2 to nano si/FeSi for the high-performance lithium-ion battery anode. Mater Today Energy 2021;21:100817. https://doi.org/10.1016/j.mtener.2021.100817.

[86] Chen Y-X, Liao H-C, Cheng Y-W, Huang J-H, Liu C-P. Scalable interlayer nanostructure design for high-rate (10C) submicron silicon-film electrode by incorporating silver nanoparticles. ACS Appl Mater Interfaces 2023;15:18845–56. https://doi.org/10.1021/acsami.2c23279.

[87] Yang Y, Liu S, Bian X, Feng J, An Y, Yuan C. Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode. ACS Nano 2018;12:2900–8. https://doi.org/10.1021/acsnano.8b00426.

[88] Uchida G, Masumoto K, Sakakibara M, Ikebe Y, Ono S, Koga K, et al. Single-step fabrication of fibrous si/sn composite nanowire anodes by high-pressure he plasma sputtering for high-capacity li-ion batteries. Sci Rep 2023;13:14280. https://doi.org/10.1038/s41598-023-41452-3.

[89] Tamirat AG, Lui Y, Dong X, Wang C, Wang Y, Xia Y. Ultrathin silicon nanolayer implanted ni x  si/ni nanoparticles as superlong‐cycle lithium‐ion anode material. Small Struct 2021;2:2000126. https://doi.org/10.1002/sstr.202000126.

[90] Ma W, Liu X, Wang X, Wang Z, Zhang R, Yuan Z, et al. Crystalline cu-silicide stabilizes the performance of a high capacity si-based li-ion battery anode. J Mater Chem A 2016;4:19140–6. https://doi.org/10.1039/C6TA08740J.

[91] Zhang Y, Chen M, Chen Z, Wang Y, Li S, Duan P, et al. Constructing cycle-stable si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity si and ti-bearing blast furnace slag. J Alloys Compd 2021;876:160125. https://doi.org/10.1016/j.jallcom.2021.160125.

[92] Chae S, Ko M, Park S, Kim N, Ma J, Cho J. Micron-sized fe–cu–si ternary composite anodes for high energy li-ion batteries. Energy Environ Sci 2016;9:1251–7. https://doi.org/10.1039/C6EE00023A.

[93] Han HK, Loka C, Yang YM, Kim JH, Moon SW, Cho JS, et al. High capacity retention si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries. J Power Sources 2015;281:293–300. https://doi. org/10.1016/j. jpowsour. 2015.01.122.

[94]Wang F, Chen G, Zhang N, Liu X, Ma R. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. Carbon Energy 2019;1:219–45. https://doi.org/10.1002/cey2.24.

[95] Xu K, Liu X, Guan K, Yu Y, Lei W, Zhang S, et al. Research progress on coating structure of silicon anode materials for lithium‐ion batteries. ChemSusChem 2021;14:5135–60. https://doi. org/10.1002/cssc.202101837.

[96] John J. Conformal coating of TiO2 shell on silicon nanoparticles for improved electrochemical performance in li-ion battery applications n.d.

[97] Kowalski D, Mallet J, Thomas S, Nemaga AW, Michel J, Guery C, et al. Electrochemical synthesis of 1D core-shell si/TiO2 nanotubes for lithium ion batteries. J Power Sources 2017;361:243–8. https://doi.org/10.1016/j.jpowsour.2017.07.003.

[98] Zhang N, Liu Y, Yang J, Zhang S, He S. Preparation and characterization of nanosized multi-sphere si-TiO2 based composites for lithium storage. Electrochimica Acta 2016;212:657–61. https://doi. org/10.1016/j.electacta.2016.07.044.

[99] Sun C, Pan J, Fu X, Ma D, Cui L, Yao W, et al. Homogeneous encapsulation of si/SnO2 nanospheres in tunable carbon electrospinning nanofibers for high-performance lithium-ion battery. J Energy Storage 2024;88:111576. https://doi.org/10.1016/j.est.2024.111576.

[100] Jiao X-W, Tian Y-H, Zhang X-J. Hollow si nanospheres with amorphous TiO2 layer used as anode for high-performance li-ion battery. Appl Surf Sci 2021;566:150682. https://doi. org/10.1016/j. apsusc.2021.150682.

[101] Wang C, Han Y, Li S, Chen T, Yu J, Lu Z. Thermal lithiated-TiO2 : a robust and electron-conducting protection layer for li–si alloy anode. ACS Appl Mater Interfaces 2018;10:12750–8. https://doi.org/10.1021/acsami.8b02150.

[102] Kim D, Park M, Kim S-M, Shim HC, Hyun S, Han SM. Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless si microparticle composite anode. ACS Nano 2018;12:10903–13. https://doi.org/10.1021/acsnano.8b03951.

[103] Zhu B, Liu N, McDowell M, Jin Y, Cui Y, Zhu J. Interfacial stabilizing effect of ZnO on si anodes for lithium ion battery. Nano Energy 2015;13:620–5. https://doi. org/10.1016/j.nanoen.2015.03.019.

[104] Zhou Z-W, Liu Y-T, Xie X-M, Ye X-Y. Constructing novel si@SnO2 core–shell heterostructures by facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage. ACS Appl Mater Interfaces 2016;8:7092–100. https://doi.org/10.1021/acsami.6b00107.

[105] Si W, Sun X, Liu X, Xi L, Jia Y, Yan C, et al. High areal capacity, micrometer-scale amorphous si film anode based on nanostructured cu foil for li-ion batteries. J Power Sources 2014;267:629–34. https://doi.org/10.1016/j.jpowsour.2014.05.136.

[106] Grinbom G, Duveau D, Gershinsky G, Monconduit L, Zitoun D. Silicon/hollow γ-Fe2 O3 nanoparticles as efficient anodes for li-ion batteries. Chem Mater 2015;27:2703–10. https://doi. org/10.1021/acs.chemmater.5b00730.

[107] Wang G, Zhang J, Zhang Q, Tan X, Li Q, Xie K. In-situ preparation of Nb2O5 coated si nanoparticles with pseudocapacitive effect for high-rate lithium ion batteries. J Electroanal Chem 2022;904:115945. https://doi.org/10.1016/j.jelechem.2021.115945.

[108] Hwa Y, Kim W-S, Yu B-C, Hong S-H, Sohn H-J. Enhancement of the cyclability of a si anode through Co3 O4 coating by the sol–gel method. J Phys Chem C 2013;117:7013–7. https://doi. org/10.1021/jp401333v.

[109] Yue L, Tang J, Li F, Xu N, Zhang F, Zhang Q, et al. Enhanced reversible lithium storage in ultrathin W18O49 nanowires entwined si composite anode. Mater Lett 2017;187:118–22. https://doi. org/10.1016/j.matlet.2016.10.093.

[110] Martinez-Garcia A, Thapa AK, Dharmadasa R, Nguyen TQ, Jasinski J, Druffel TL, et al. High rate and durable, binder free anode based on silicon loaded MoO3 nanoplatelets. Sci Rep 2015;5:10530. https://doi.org/10.1038/srep10530.

[111] Ye J, Chen Z, Hao Q, Xu C, Hou J. One-step mild fabrication of porous core-shelled si@TiO2 nanocomposite as high performance anode for li-ion batteries. J Colloid Interface Sci 2019;536:171–9. https://doi.org/10.1016/j.jcis.2018.10.029.

[112] Zhu J, Wang H, Lin R. Improving the electrochemical performance of silicon materials by SnO2 through structural design and conductivity. Appl Surf Sci 2022;581:152230. https://doi. org/10.1016/j.apsusc.2021.152230.

[113] Hou L, Xiong S, Cui R, Jiang Y, Chen R, Liang W, et al. Three‐dimensional porous carbon framework confined si@TiO2 nanoparticles as anode material for high‐capacity lithium‐ion batteries. ChemElectroChem 2022;9:e202101447. https://doi.org/10.1002/celc.202101447.

[114] Chen Y, Yan Y, Liu X, Zhao Y, Wu X, Zhou J, et al. Porous si/Fe2O3 dual network anode for lithium–ion battery application. Nanomaterials 2020;10:2331. https://doi.org/10.3390/nano10122331.

[115] Li N, Yi Z, Lin N, Qian Y. An Al2 O3 coating layer on mesoporous si nanospheres for stable solid electrolyte interphase and high-rate capacity for lithium ion batteries. Nanoscale 2019;11:16781–7. https://doi.org/10.1039/C9NR05264J.

[116] Song H, Wang HX, Lin Z, Yu L, Jiang X, Yu Z, et al. Hierarchical nano-branched c-si/SnO2 nanowires for high areal capacity and stable lithium-ion battery. Nano Energy 2016;19:511–21. https://doi.org/10.1016/j.nanoen.2015.10.031.

[117] Yang Y, Yang H-R, Seo H, Kim K, Kim J-H. Novel synthesis of porous si-TiO2 composite as a high-capacity anode material for li secondary batteries. J Alloys Compd 2021;872:159640. https://doi.org/10.1016/j. jallcom.2021.159640.

[118] Jin Y. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Env Sci 2017.

[119] Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, et al. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high‐performance and safe lithium storage. Adv Mater 2017;29:1700523. https://doi.org/10.1002/adma.201700523.

[120] Shi J, Zu L, Gao H, Hu G, Zhang Q. Silicon‐based self‐assemblies for high volumetric capacity li‐ion batteries via effective stress management. Adv Funct Mater 2020;30:2002980. https://doi. org/10.1002/adfm. 202002980.

[121] Nguyen VA, Kuss C. Review—conducting polymer-based binders for lithium-ion batteries and beyond. J Electrochem Soc 2020;167:065501. https://doi.org/10.1149/1945-7111/ab856b.

[122] Ramdhiny MN, Jeon J. Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries. Carbon Energy 2024;6:e356. https://doi.org/10.1002/cey2.356.

[123] Preman AN, Lee H, Yoo J, Kim IT, Saito T, Ahn S. Progress of 3D network binders in silicon anodes for lithium ion batteries. J Mater Chem A 2020;8:25548–70. https://doi. org/10.1039/D0TA07713E.

[124] Chen C-H, Wang J-M, Chen W-Y. Conductive polyaniline doped with dodecyl benzene sulfonic acid: Synthesis, characterization, and antistatic application. Polymers 2020;12:2970. https://doi.org/10. 3390/polym12122970.

[125] Zhang C, Chen Q, Ai X, Li X, Xie Q, Cheng Y, et al. Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties. J Mater Chem A 2020;8:16323–31. https://doi.org/10.1039/D0TA04389C.

[126] Wu C-Y, Kuo P-H, Duh J-G. Reviving of silicon waste with N-doped carbon core-shell structure prepared by vapor deposition polymerization of polypyrrole applied in lithium-ion battery. Surf Coat Technol 2021;421:127418. https://doi.org/10.1016/j.surfcoat.2021.127418.

[127] Ryu J, Park S, Hong D, Shin S. Intertwining porous silicon with conducting polymer for high-efficiency stable li-ion battery anodes. Korean J Chem Eng 2023;40:497–503. https://doi. org/10.1007/s11814-022-1227-8.

[128] He X, Han R, Jiang P, Chen Y, Liu W. Molecularly engineered conductive polymer binder enables stable lithium storage of si. Ind Eng Chem Res 2020;59:2680–8. https://doi. org/10.1021/acs. iecr.9b05838.

[129] Xu Z. Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries 2023.

[130] Zhao H, Wei Y, Qiao R, Zhu C, Zheng Z, Ling M, et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application 2017.

[131] Zhang S, Chen S, Wang Y, Zhang T, Yue H, Li T, et al. Fabrication of polypyrrole-coated silicon nanoparticle composite electrode for lithium-ion battery. Ionics 2024;30:7869–79. https://doi. org/10.1007/s11581-024-05867-w.

[132] Li S, Huang J, Wang J, Han K. Micro-sized porous silicon@PEDOT with high rate capacity and stability for li-ion battery anode. Mater Lett 2021;293:129712. https://doi. org/10.1016/j. matlet.2021.129712.

[133] Yuca N, Kalafat I, Taskin OS, Arici E. Miscellaneous <span style="font-variant:Small-caps;">PEDOT</span> : PTS (polythiophenesulfonyl chloride) based conductive binder for silicon anodes in lithium ion batteries. Polym Adv Technol 2023;34:279–86. https://doi.org/10.1002/pat.5886.

[134] Higgins TM, Park S-H, King PJ, Zhang C (John), McEvoy N, Berner NC, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016;10:3702–13. https://doi.org/10.1021/acsnano.6b00218.

[135] Sandu G, Ernould B, Rolland J, Cheminet N, Brassinne J, Das PR, et al. Mechanochemical synthesis of PEDOT:PSS hydrogels for aqueous formulation of li-ion battery electrodes. ACS Appl Mater Interfaces 2017;9:34865–74. https://doi.org/10.1021/acsami.7b08937.

[136] Li Z, Liang Z, Ma Z, Qu P, Zhang Y. Boosting the anode performance of the porous si coated with polydopamine and cross-linked with sodium alginate. J Alloys Compd 2024;971:172738. https://doi.org/10.1016/j.jallcom.2023.172738.

[137] Zhang Y, Wang X, Ma L, Tang R, Zheng X, Zhao F, et al. Polydopamine blended with polyacrylic acid for silicon anode binder with high electrochemical performance. Powder Technol 2021;388:393–400. https://doi.org/10.1016/j.powtec.2021.05.001.

[138] Zheng H, Fang S, Tong Z, Dou H, Zhang X. Porous silicon@polythiophene core–shell nanospheres for lithium‐ion batteries. Part Part Syst Charact 2016;33:75–81. https://doi. org/10.1002/ppsc. 201500183.

[139] Zhou J, Zhou L, Yang L, Chen T, Li J, Pan H, et al. Carbon free silicon/polyaniline hybrid anodes with 3D conductive structures for superior lithium-ion batteries. Chem Commun 2020;56:2328–31. https://doi.org/10.1039/C9CC09132G.

[140] Pan S, Han J, Wang Y, Li Z, Chen F, Guo Y, et al. Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv Mater 2022;34:2203617. https://doi. org/10. 1002/adma.202203617.

[141] Eldona C, Hanif Hawari N, Haidar Hamid F, Dempwolf W, Iskandar F, Peiner E, et al. A free‐standing polyaniline/silicon nanowire forest as the anode for lithium‐ion batteries. Chem – Asian J 2022;17:e202200946. https://doi.org/10.1002/asia.202200946.

[142] Lv Y, Shang M, Chen X, Nezhad PS, Niu J. Largely improved battery performance using a microsized silicon skeleton caged by polypyrrole as anode. ACS Nano 2019;13:12032–41. https://doi.org/10.1021/acsnano.9b06301.

[143] Xia T, Xu C, Dai P, Li X, Lin R, Tang Y, et al. Interpenetrating gels as conducting/adhering matrices enabling high-performance silicon anodes. J Mater Chem A 2021;9:12003–8. https://doi.org/10.1039/D1TA01733K.

[144] Xu Z, Zheng E, Xiao Z, Shao H, Liu Y, Wang J. Photo-initiated in situ synthesis of polypyrrole fe-coated porous silicon microspheres for high-performance lithium-ion battery anodes. Chem Eng J 2023;459:141543. https://doi.org/10.1016/j.cej.2023.141543.

[145] Li R, Chen Y, Ding N, Li Z, Li X. Studies on the preparation and electrochemical performance of PSi@poly(3, 4-ethylenedioxythiophene) composites as anode materials for lithium-ion batteries. J Mater Sci 2022;57:4323–33. https://doi.org/10.1007/s10853-022-06922-5.

[146] Liu X, Xu Z, Iqbal A, Chen M, Ali N, Low C, et al. Chemical coupled PEDOT:PSS/si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett 2021;13:54. https://doi.org/10.1007/s40820-020-00564-5.

[147] Chen B, Xu D, Chai S, Chang Z, Pan A. Enhanced silicon anodes with robust SEI formation enabled by functional conductive binder. Adv Funct Mater 2024;34:2401794. https://doi. org/10.1002/adfm.202401794.

[148] Luo X, Wu Q, Zhou L, Liu S, Shen X, Lu L. A graded structure of silicon/carbon composite powder for highly stable lithium ion battery anode. J Alloys Compd 2024;989:174386. https://doi. org/10.1016/j.jallcom.2024.174386.

[149] Huang C, Xu X, Chen D, Lei P. Enhancing rate performance of si@C anode with pore architecture regulated by foaming agent pre-blended with bead mill homogenized si and graphene. J Energy Storage 2025;112:115571. https://doi.org/10.1016/j.est.2025.115571.