Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2025, 7(3); doi: 10.25236/FMSR.2025.070312.

Investigating the Effects of SGLT2 Inhibitors Combined with Aerobic Exercise on Diabetic Nephropathy via Modulation of the Hippo Pathway

Author(s)

Shi Yaoyao, Sheng Luo

Corresponding Author:
Shi Yaoyao
Affiliation(s)

Zhejiang Normal University, Jinhua City, Zhejiang Province, China

Abstract

Hypertension, diabetes, and other factors play a significant role in the progression of kidney disease. These harmful effects can induce renal fibrosis and eventually lead to irreversible end-stage renal disease. Aerobic exercise has been shown to alleviate the progression of kidney disease by reducing oxidative stress and inflammation. The SGLT2 inhibitor dapagliflozin lowers blood glucose levels by inhibiting the activity of the SGLT2 protein, and this glucose-lowering mechanism can act directly on the kidneys to exert therapeutic effects. Given the rising incidence of diabetic nephropathy and other kidney diseases, identifying effective and rational interventions is of great importance. The development of kidney disease is closely linked to molecular mechanisms within biological cells. Currently, interventions primarily involve pharmacological treatments and lifestyle modifications. However, few studies have examined the combined effect of aerobic exercise and SGLT2 inhibitors on kidney disease through modulation of the Hippo pathway. Therefore, this article reviews the impact of aerobic exercise combined with dapagliflozin on diabetic kidney disease via the Hippo pathway, aiming to provide insights for potential treatment strategies.

Keywords

SGLT2 Inhibitors, Aerobic Exercise, Hippo Signaling Pathway

Cite This Paper

Shi Yaoyao, Sheng Luo. Investigating the Effects of SGLT2 Inhibitors Combined with Aerobic Exercise on Diabetic Nephropathy via Modulation of the Hippo Pathway. Frontiers in Medical Science Research (2025), Vol. 7, Issue 3: 86-91. https://doi.org/10.25236/FMSR.2025.070312.

References

[1] Fioretto, P.; Mauer, M. Histopathology of Diabetic Nephropathy[J]. 2007, 195-207.

[2] Bhatt, D. L.; Szarek, M.; Pitt, B.; Cannon, C. P.; Leiter, L. A.; McGuire, D. K.; Lewis, J. B.; Riddle,M. C.; Inzucchi, S. E.; Kosiborod, M. N.; et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease[J]. 2021, 129-139.

[3] Kanaley, J. A.; Colberg, S. R.; Corcoran, M. H.; Malin, S. K.; Rodriguez, N. R.; Crespo, C. J.; Kirwan, J. P.; Zierath, J. R. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine[J]. 2022, 353-368.

[4] Meyer, A. J. The integration of glutathione homeostasis and redox signaling[J]. 2008, 1390-1403.

[5] Amaral, L. S.; Silva, F. A.; Correia, V. B.; Andrade, C. E.; Dutra, B. A.; Oliveira, M. V.;deMagalhães, A. C.; Volpini, R. A.; Seguro, A. C.; Coimbra, T. M.; et al. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats[J]. 2016, 437-445.

[6] Halder, G.; Johnson, R. L. Hippo signaling: growth control and beyond[J]. 2011, 9-22.

[7] St John, M. A.; Tao, W.; Fei, X.; Fukumoto, R.; Carcangiu, M. L.; Brownstein, D. G.; Parlow, A. F.; McGrath, J.; Xu, T. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction[J]. 1999, 182-186.

[8] Tumaneng, K.; Schlegelmilch, K.; Russell, R. C.; Yimlamai, D.; Basnet, H.; Mahadevan, N.; Fitamant, J.; Bardeesy, N.; Camargo, F. D.; Guan, K. L. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29[J]. 2012, 1322-1329.

[9] Dennis, V. W.; Brazy, P. C. Phosphate and glucose transport in the proximal convoluted tubule: mutual dependency on sodium[J]. 1978, 79-80.

[10] Rieg, T.; Masuda, T.; Gerasimova, M.; Mayoux, E.; Platt, K.; Powell, D. R.; Thomson, S. C.; Koepsell, H.; Vallon, V. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia[J]. 2014, F188-193.

[11] Heerspink, H. J. L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M. K.; Heinzel, A.; Mayer, G. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease[J]. 2019, 1154-1166.

[12] Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice[J]. 2017, 163-171.

[13] Yuan, Q., Wang, Q., Liu, Y., Liu, J., Tang, M., Yang, J. Exploration and practice of artificial intelligence empowering diagnosis and treatment of hematological diseases [J]. J. Med. Life Sci., 2025, 1(3): 1–7. doi: 10.71222/95kr3016.

[14] Corremans, R.; Vervaet, B. A.; Dams, G.; D’Haese, P. C.; Verhulst, A. Metformin and Canagliflozin Are Equally Renoprotective in Diabetic Kidney Disease but Have No Synergistic Effect[J]. 2023, 9043.

[15] Wang, Q., Yuan, Q., Liu, J., Hu, S., Du, J., Zhou, S. The influence of genetic and environmental factors on the occurrence and development of blood diseases [J]. Eur. J. Public Health Environ. Res., 2025, 1(1): 80–86.

[16] Yang, T.; Heng, C.; Zhou, Y.; Hu, Y.; Chen, S.; Wang, H.; Yang, H.; Jiang, Z.; Qian, S.; Wang, Y.; et al. Targeting mammalian serine/threonine-protein kinase 4 through Yes-associated protein/TEA domain transcription factor-mediated epithelial-mesenchymal transition ameliorates diabetic nephropathy orchestrated renal fibrosis[J]. 2020, 154258.

[17] Zhang, M. Optimization of medical device software lifecycle management based on DevOps [J]. J. Med. Life Sci., 2025, 1(3): 8–13. doi: 10.71222/etnrdv93.

[18] Li, R.-Y.; Guo, L. Exercise in Diabetic Nephropathy: Protective Effects and Molecular Mechanism[J]. 2024, 3605.

[19] Okamura, T.; Hashimoto, Y.; Osaka, T.; Senmaru, T.; Fukuda, T.; Hamaguchi, M.; Fukui, M. miR-23b-3p acts as a counter-response against skeletal muscle atrophy[J]. 2020, 535-547.

[20] Sun, C.; De Mello, V.; Mohamed, A.; Ortuste Quiroga, H. P.; Garcia-Munoz, A.; Al Bloshi, A.;Tremblay, A. M.; von Kriegsheim, A.; Collie-Duguid, E.; Vargesson, N.; et al. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function[J]. 2017, 1958-1972.

[21] Yoshida, T. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease[J]. 2008, 8-17.

[22] Lee, Y. A.; Noon, L. A.; Akat, K. M.; Ybanez, M. D.; Lee, T. F.; Berres, M. L.; Fujiwara, N.; Goossens, N.; Chou, H. I.; Parvin-Nejad, F. P.; et al. Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap[J]. 2018, 4962.

[23] Bai, R. The role of light therapy in mental health and depression [J]. Eur. J. Public Health Environ. Res., 2025, 1(1): 87–91.

[24] Chen, X.; Zeng, X.; Qiu, X.; Liu, C.; Lu, P.; Shen, Z.; Zhou, X.; Yang, K. Exercise alleviates renal interstitial fibrosis by ameliorating the Sirt1-mediated TGF-β1/Smad3 pathway in T2DM mice[J]. 2024,e230448.

[25] Zhang, L.; Lin, H.; Yang, X.; Shi, J.; Sheng, X.; Wang, L.; Li, T.; Quan, H.; Zhai, X.; Li, W. Effects of dapagliflozin monotherapy and combined aerobic exercise on skeletal muscle mitochondrial quality control and insulin resistance in type 2 diabetes mellitus rats[J]. 2023, 115852.