Welcome to Francis Academic Press

Academic Journal of Engineering and Technology Science, 2020, 3(4); doi: 10.25236/AJETS.2020.030409.

Synthesis of Dense WS2 Film and Its Photoelectric Properties

Author(s)

Zhiming Lin*

Corresponding Author:
Zhiming Lin
Affiliation(s)

Department of Electronic Engineer, Jinan University, Guangzhou, Guangdong 510632, China
*Corresponding Author: E-mail:[email protected]

Abstract

 As one of the representatives of transition metal sulfides, Tungsten disulfide(WS2) inherits the characteristics of graphene such as high mobility, transparency and flexibility. At the same time, its wide band gap also makes up for the defect of graphene zero band gap, making it have a higher The switching characteristics of the device make it have a broader development prospect in the field of electronic devices. In this work, low-pressure chemical vapor deposition(CVD) was used to prepare a dense few-layer WS2 film. At the same time, in order to understand the photoelectric performance of the grown WS2, a photodetector based on WS2 was fabricated and its photoelectric performance was studied. Here, the response time and dark current recovery time of the photodetector based on CVD WS2 is very fast (within 200ms). After illumination, dark current of the device is stable near 7.5e-11A. Upon Vds = 0.1v, the maximum responsivity of the optoelectronic device is 9mA/W, the maximum EQE is 3%, and the maximum On/Off ratio is 750. The photoelectric performance of the photodetector based on WS2 from high to low in different wavelength is 405nm, 660nm and 520nm. In addition to preparing photodetectors, this method of synthesizing dense WS2 film could pave the way for designing Large area humidity or gas sensor to study its humidity sensitive and gas sensitive performance.

Keywords

WS2, Synthesis, photodetector, photoelectric properties

Cite This Paper

Zhiming Lin. Synthesis of Dense WS2 Film and Its Photoelectric Properties. Academic Journal of Engineering and Technology Science (2020) Vol. 3 Issue 4: 81-89. https://doi.org/10.25236/AJETS.2020.030409.

References

[1] D. Ovchinnikov,  A. Allain,  Y. S. Huang,  D. Dumcenco and A. Kis (2014). Electrical Transport Properties of Single-Layer WS2. ACS Nano, vol.8, no.8, p.8174-8181.
[2] L. Yang,  K. Majumdar,  H. Liu,  Y. Du,  H. Wu,  M. Hatzistergos,  P. Y. Hung,  R. Tieckelmann,  W. Tsai and C. Hobbs (2014). Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Letters, vol.14, no.11, p.6275-6280.
[3] A. A. Balandin,  S. Ghosh,  W. Bao,  I. Calizo,  D. Teweldebrhan,  F. Miao and C. N. Lau (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, vol.8, no.3, p.902-907.
[4] F. Bonaccorso,  Z. Sun,  T. Hasan and A. Ferrari (2010). Graphene photonics and optoelectronics. Nature Photonics, vol.4, no.9, p.611-622.
[5] F. Chen,  J. Xia,  D. K. Ferry and N. Tao (2009). Dielectric Screening Enhanced Performance in Graphene FET. Nano Letters, vol.9, no.7, p.2571-2574.
[6] Y. Song,  Y. Luo,  C. Zhu,  H. Li,  D. Du and Y. J. B. Lin (2016). Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosensors and Bioelectronics
vol.76, p.195-212.
[7] A. L. Elias,  N. Perealopez,  A. Castrobeltran,  A. Berkdemir,  R. Lv,  S. Feng,  A. Long,  T. Hayashi,  Y. A. Kim and M. Endo (2013). Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers. ACS Nano, vol.7, no.6, p.5235-5242.
[8] X. Ling,  Y. Lee,  Y. Lin,  W. Fang,  L. Yu,  M. S. Dresselhaus and J. Kong (2014). Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, vol.14, no.2, p.464-472.
[9] Y. Zhang,  J. Shi,  G. Han,  M. Li,  Q. Ji,  D. Ma,  Y. Zhang,  C. Li,  X. Lang and Y. Zhang (2015). Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Research, vol.8, no.9, p.2881-2890.
[10] Y. Zhang,  Y. Zhang,  Q. Ji,  J. Ju,  H. Yuan,  J. Shi,  T. Gao,  D. Ma,  M. Liu and Y. Chen (2013). Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, vol.7, no.10, p.8963-8971.
[11] H. ar,  A. zden,  B. Yorulmaz,  C. Sevik,  N. Kosku Perkgoz and F. Ay (2018). A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers. Journal of Materials Science Materials in Electronics, vol.29, p.8785–8792.
[12] J. Huang,  J. Pu,  C. L. Hsu,  M. H. Chiu,  Z. Juang,  Y. Chang,  W. Chang,  Y. Iwasa,  T. Takenobu and L. Li (2014). Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, vol.8, no.1, p.923-930.
[13] A. Kuc,  N. Zibouche and T. Heine (2011). How does quantum confinement influence the electronic structure of transition metal sulfides TmS2. Physics.
[14] Y. Li,  A. Chernikov,  X. Zhang,  A. Rigosi,  H. M. Hill,  d. Z. Van, Arend M,  D. A. Chenet,  E. M. Shih,  J. Hone and T. F. Heinz In Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2 , MoSe2 , WS2 , and WSe2, Aps March Meeting, 2014.
[15] D. S. Schulman,  A. J. Arnold and S. Das (2018). Contact engineering for 2D materials and devices. Chemical Society Reviews, vol.47, no.9, p.3037-3058.
[16] Z. Jia,  J. Xiang,  F. Wen,  R. Yang,  C. Hao and Z. Liu (2016). Enhanced Photoresponse of SnSe-Nanocrystals-Decorated WS2 Monolayer Phototransistor. ACS Applied Materials & Interfaces
vol.8, no.7, p.4781-4788.
[17] N. Perealopez,  A. L. Elias,  A. Berkdemir,  A. Castrobeltran,  H. R. Gutierrez,  S. Feng,  R. Lv,  T. Hayashi,  F. Lopezurias and S. Ghosh (2013). Photosensor Device Based on Few-Layered WS2 Films. Advanced Functional Materials, vol.23, no.44, p.5511-5517.
[18] C. Ruppert,  A. Chernikov,  H. M. Hill,  A. F. Rigosi and T. F. Heinz (2017). The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS2 after Ultrafast Excitation. Nano Letters, vol.17, no.2, p.644-651.
[19] H. Su,  C. Wei,  A. Deng,  D. Deng,  C. Yang and J. Dai (2017). Anomalous enhancement of valley polarization in multilayer WS2 at room temperature. Nanoscale, vol.9, no.16, p.5148-5154.