Welcome to Francis Academic Press

Academic Journal of Engineering and Technology Science, 2020, 3(4); doi: 10.25236/AJETS.2020.030416.

The Overview of LaBr3:Ce Detector Application

Author(s)

Jiehao Chen*, Xiaochuan Sun and Jingge Zhou

Corresponding Author:
Jiehao Chen
Affiliation(s)

College of Nuclear Technology and Automation Engineering ,Chengdu University of Technology, Chengdu 610059, Sichuan, China
*Corresponding author e-mail: [email protected]

Abstract

LaBr3:Ce detector is widely used in the field of radiation detection due to its many advantages. This article summarizes the relevant achievements of researchers at home and abroad on the application of LaBr3:Ce detector, and summarizes the application of LaBr3:Ce detector from the aspects: radioactivity measurement, nuclear safety and nuclear accident monitoring, and particle detection. On this basis, the research trend and development direction of LaBr3:Ce detector in airborne gamma spectrometry measurement are proposed.

Keywords

LaBr3:Ce detector, radioactivity measurement, nuclear safety and nuclear accident monitoring, particle detection

Cite This Paper

Jiehao Chen, Xiaochuan Sun and Jingge Zhou. The Overview of LaBr3:Ce Detector Application. Academic Journal of Engineering and Technology Science (2020) Vol. 3 Issue 4: 170-178. https://doi.org/10.25236/AJETS.2020.030416.

References

[1] Van Loef E V D , Dorenbos P , Van Eijk C W E (2001). High-energy-resolution scintillator: Ce3+ activated LaBr3. Applied Physics Letters, 79 (10): 1573-0.
[2] Van Loaf E V D (2002). Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators. Nucl. Instrum. Methods A, 486 (1): 254-258.
[3] Gao Feng,Zhang Jianguo (2012). Study on the Self -Activity Background Spectrum from LaBr3: Ce. Nuclear Electronics & Detection Technology, (05): 18-21.
[4] Wolszczak W , Dorenbos P (2017). Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators. Nuclear Instruments & Methods in Physics Research, 857 (Complete): 66-74.
[5] Guo Cheng, Lai Wanchang (2013). Application of LaBr3 Detector in Natural Radioactivity Measuring. Nuclear Electronics & Detection Technology, (06): 55-58.
[6] Hou Xin, Yan Weidong (2016). The Method for Processing Gamma-ray Spectrum of Small Size LaBr3( Ce) Detector. Nuclear Electronics & Detection Technology, (6): 656-660.
[7] Gan Lin, Li Jing (2019). Discussion on Background Subtraction Method of γ Energy Spectrum of Lanthanum Bromide Detector. Technology Innovation and Application, (29).
[8] Ryan C G, Clayton E, Griffin W L (1988). SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nuclear Instruments & Methods in Physics Research, 34 (3): 396-402.
[9] Zhang Qinxian, Ge Liangquan, Zeng Guoqiang (2012). Estimate of background based on fourier transform in nai(tl) spectrometry. Atomic Energy science and technology, 45 (10): 1258-1261.
[10] Bashir M, Newman R T, Jones P (2019). Determination of activity concentration of 238U and 232Th series radionuclides in soil using a gamma-ray spectrometer in singles and coincidence modes. Applied Radiation and Isotopes. 154: 108880.
[11] Meleshenkovskii I, Pauly N, Labeau P E(2018). Determination of the uranium enrichment without calibration standards using a 2 × 2 inch LaBr3(Ce) room temperature detector and Monte Carlo sampling approach for uncertainty assessment. The European Physical Journal Plus. 133 (12).
[12] Meleshenkovskii I, Pauly N, Labeau P E (2019). Making isotopic composition artificially intelligent: Conceptual design and performance assessment of pattern recognition algorithms for uranium enrichment determination tasks using CZT and LaBr3(Ce) detectors. The European Physical Journal Plus. 134 (9).
[13] Meleshenkovskii I, Pauly N, Labeau P E(2020). Performance assessment of a 500 mm3 CZT and a 2x2 inch LaBr3(Ce) detectors for the determination of the uranium enrichment using the enrichment-meter method and calibration standards for safeguards applications. Applied Radiation and Isotopes. 156: 108975.
[14] Su G, Zeng Z, Cheng J (2011). Monte Carlo Simulation Of In Situ LaBr Gamma-Ray Spectrometer For Marine Environmental Monitoring. Radiation Protection Dosimetry, 146 (1-3): p.103-106.
[15] Zeng M, Zeng Z, Cang J (2014). A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine, Environmental Monitoring. Technology and Instrumentation in Particle Physics.
[16] Zeng, Zhi, Pan, Xingyu, Ma, Hao (2017). Optimization of an underwater in-situ LaBr3:Ce spectrometer with energy self-calibration and efficiency calibration. Applied Radiation & Isotopes, 121: 101-108.
[17] Prieto E, Casanovas R, Salvadó M (2018). Spectral windows analysis method for monitoring anthropogenic radionuclides in real-time environmental gamma-ray scintillation spectrometry. Journal of radiological protection: official journal of the Society for Radiological Protection. 38 (1): 229-246.
[18] Baeza A, Corbacho J A, Caballero J M (2017). Development of an advanced radioactive airborne particle monitoring system for use in early warning networks. J Radiol Prot. 37 (3): 642-658.
[19] Löher, B., Savran, D., Fiori, E., Miklavec, M., Pietralla, N., Vencelj, M., (2012). High countrate spectroscopy with LaBr3:Ce scintillation detectors. Nucl. Instrum. Methods Phys.Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 686, 1–6.
[20] Drescher A, Yoho M, Landsberger S (2017). Gamma-gamma coincidence performance of LaBr3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios. Applied Radiation and Isotopes. 122: 116-120.
[21] LI Xiaoxu, Jia Mingchun (2016). Development of portable γ spectrometer based on LaBr3 detector and digital multi-channel analyzer. Ship Science And Technology, 38 (19): 142-144.
[22] Jorge Navarro, Terry A (2017).Gamma-Ray Simulated Spectra Deconvolution of a LaBr3 1×1-in. Scintillator for Nondestructive ATR Fuel Burnup Onsite Predictions. Nuclear Technology, p.183-192.
[23] Cao Ye. Study On Spectrum Correction Algorithm of HPGe-LaBr3 Double Dectector System Under Radiation Conditions. http:www.cnki.net
[24] Tang X, Meng J, Wang P (2016). Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers. Applied Radiation and Isotopes. 110: 100-108.
[25] Tang X, Meng J, Wang P (2016). Simulated minimum detectable activity concentration (MDAC) for a real-time UAV airborne radioactivity monitoring system with HPGe and LaBr3 detectors. Radiation Measurements. 85: 126-133.
[26] Sanada Y, Urabe Y, Sasaki M (2018). Evaluation of ecological half-life of dose rate based on airborne radiation monitoring following the Fukushima Dai-ichi nuclear power plant accident. Journal of Environmental Radioactivity. 192: 417-425.
[27] Ji Y, Choi H, Lee W (2018). Application of a LaBr3 (Ce) Scintillation Detector to an Environmental Radiation Monitor. IEEE Transactions on Nuclear Science. 65 (8): 2021-2028.
[28] JI, Y.-Y., LIM, T., CHOI, H.-Y., CHUNG, K. H., & KANG, M. J. (2019). Development and Performance of a Multipurpose System for the Environmental Radiation Survey Based on a LaBr3(Ce) Detector. IEEE Transactions on Nuclear Science, 1–1. doi:10.1109/tns.2019.2949651
[29] Ji Y, Lim T, Hitomi K (2019). Assessment of radioactive cesium deposition using ground-based gamma-ray spectrometry with a LaBr3(Ce) detector. Journal of radiological protection : official journal of the Society for Radiological Protection. 39 (4): 1006-1020.
[30] C. Hoel, L.G. Sobotka, K.S. Shah(2005). Pulse-shape discrimination of La halide scintillators. Nuclear Instruments & Methods in Physics Research, 540 (1): p.205-208.
[31] Crespi F C L, Camera F, Blasi N(2009). Alpha–gamma discrimination by pulse shape in LaBr3:Ce and LaCl3:Ce. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 602 (2): 520-524.
[32] Zeng M, Cang J, Zeng Z (2016). Quantitative analysis and efficiency study of PSD methods for a LaBr3:Ce detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment. 813: 56-61.
[33] Yang K, Menge P R, Ouspenski V (2016). Enhanced α- γ Discrimination in Co-doped LaBr3 :Ce. IEEE Transactions on Nuclear Science. 63 (1): 416-421.
[34] Cazzaniga, C., Nocente, M., Tardocchi, M., Rebai, M., Pillon, M., Camera, F., … Gorini, G. (2015). Response of LaBr3 (Ce) scintillators to 14 MeV fusion neutrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 778, 20–25. doi:10.1016/j.nima.2015.01.002
[35] Kiener, J., Tatischeff, V., Deloncle, I., de Séréville, N., Laurent, P., Blondel, C., … Yavahchova, M. S. (2015). Fast-neutron induced background in LaBr3:Ce detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 152–161. doi:10.1016/j.nima.2015.07.022
[36] Oberstedt, A., Billnert, R., & Oberstedt, S. (2013). Neutron measurements with lanthanum–bromide scintillation detectors—A first approach. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detector and Associated Equipment, 708, 7–14.
[37] Liu C, Pan X, Ma H (2019). A study on neutron energy spectrum estimation by LaBr3:Ce detector. Journal of Radioanalytical and Nuclear Chemistry. 320 (3): 859-864.
[38] Ebran, A., Roig, O., Méot, V., & Delaune, O. (2014). Neutron efficiency of LaBr3 :Ce detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 768, 124–129. doi:10.1016/j.nima.2014.09.064
[39] Tain, J. L., Agramunt, J., Algora, A., Aprahamian, A., Cano-Ott, D., Fraile, L. M., … Nolte, R. (2015). The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 774, 17–24. doi:10.1016/j.nima.2014. 11.060
[40] Krmar M, Teterev Y, Belov A G (2019). Beam energy measurement on LINAC-200 accelerator and energy calibration of scintillation detectors by electrons in range from 1 MeV to 25 MeV [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 935: 83-88.
[41] Gamba, E. R., Bruce, A. M., Lalkovski, S., Rudigier, M., Bottoni, S., Carpenter, M. P., … Yordanov, O. (2019). Fast-timing measurements in the ground-state band of Pd-114. Physical Review C, 100 (4). doi:10.1103/physrevc.100.044309
[42] B.Longfellow, P.C.Bender(2018).Commissioning of the LaBr3(Ce) detector array at the national superconducting cyclotron laboratory. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, (24).
[43] Lugendo I J, Ahn J K, Kumwenda M J (2019). Lifetime measurement of the first excited5/2+ state in 133Cs using NaI(Tl) and LaBr3(Ce) detectors. Applied Radiation and Isotopes. 150: 141-145.