Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2025, 7(5); doi: 10.25236/FMSR.2025.070513.

Gut Microbiota Imbalance Recovery in Colorectal Cancer Therapy

Author(s)

Wei Liu, Zhuocheng You, Ruifeng Yang, Zhigang Xiao

Corresponding Author:
Zhigang Xiao
Affiliation(s)

The First Affiliated Hospital of Hunan Normal University (Hunan People's Hospital), Changsha, Hunan, China

Abstract

The gut microbiota, regarded as the “eighth organ” of the human body, plays a crucial role in maintaining the intestinal barrier function, participating in immune regulation, facilitating substance metabolism and absorption, as well as cholesterol degradation. Colorectal cancer, a common malignant tumor of the digestive tract, has the dysbiosis of the gut microbiota as a significant contributing factor to its development. Through various approaches such as the intake of probiotics, prebiotics, synbiotics, and the implementation of microbiota transplantation, the disruption of the gut microbiota can be rectified, and its balance can be sustained. This offers more alternatives in preventing the incidence of colorectal cancer, retarding tumor progression, reducing postoperative complications of colorectal cancer, enhancing the efficacy of anti-tumor drugs, and mitigating their side effects.

Keywords

Dysbiosis; Microbiota Transplantation; Probiotics; Prebiotics; Colorectal Cancer

Cite This Paper

Wei Liu, Zhuocheng You, Ruifeng Yang, Zhigang Xiao. Gut Microbiota Imbalance Recovery in Colorectal Cancer Therapy. Frontiers in Medical Science Research (2025), Vol. 7, Issue 5: 109-115. https://doi.org/10.25236/FMSR.2025.070513.

References

[1] Baidoun F, Elshiwy K, Elkeraie Y, et al. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr Drug Targets. 2021;22(9):998-1009.

[2] Fan X, Jin Y, Chen G, Ma X, Zhang L. Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion. 2021;102(4):508-515.

[3] Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915-1920.

[4] Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787-8803.

[5] Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A. 2004;101(12):4250-4255.

[6] Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B-Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res. 2020;64(18):e2000426.

[7] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268-1273.

[8] Michaudel C, Sokol H. The Gut Microbiota at the Service of Immunometabolism. Cell Metab. 2020;32(4):514-523.

[9] Zhao LY, Mei JX, Yu G, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther. 2023;8(1):201.

[10] Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292-298.

[11] Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299-306. 

[12] Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66(2):462-470.

[13] Liu CH, et al. Influence of intestinal flora dysregulation induced by antibiotic on immunity and toll-like receptor 2, 4 gene expression in m ice. Journal of Chongqing Medical University. 2007;32(8): 839-842.(in Chinese with English abstract).

[14] Holtmeier W, Käller J, Geisel W, Pabst R, Caspary WF, Rothkötter HJ. Development and compartmentalization of the porcine TCR delta repertoire at mucosal and extraintestinal sites: the pig as a model for analyzing the effects of age and microbial factors. J Immunol. 2002;169(4):1993-2002.

[15] Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, De Simone C. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am J Physiol Gastrointest Liver Physiol. 2011;301(6):G1004-G1013.

[16] Qu R, Zhang Y, Ma Y, et al. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. Adv Sci (Weinh). 2023;10(23):e2205563. 

[17] Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 2012;87(3):701-730.

[18] Deng Q, Wang C, Yu K, et al. Streptococcus bovis Contributes to the Development of Colorectal Cancer via Recruiting CD11b⁺TLR-4⁺ Cells. Med Sci Monit. 2020;26:e921886.

[19] Abdulamir AS, Hafidh RR, Abu Bakar F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res. 2011;30(1):11.

[20] Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195-206.

[21] Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016-1022.

[22] He Z, Gharaibeh RZ, Newsome RC, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut. 2019;68(2):289-300.

[23] Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 2011 108(37):15354-15359.

[24] Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer?. Am J Physiol Gastrointest Liver Physiol. 2011;301(3):G401-G424.

[25] Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254-258.

[26] Fukata M, Abreu MT. Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol. 2009;9(6):680-687.

[27] Dahiya D, Nigam PS. Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota-Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. Int J Mol Sci. 2023;24(4):3074.

[28] Cao F, Jin L, Gao Y, et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat Nanotechnol. 2023;18(6):617-627. 

[29] Gagliardi A, Totino V, Cacciotti F, et al. Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health. 2018;15(8):1679. 

[30] Vasilescu IM, Chifiriuc MC, Pircalabioru GG, et al. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol. 2022;12:651081.

[31] Li D, Cui L, Gao Y, Li Y, Tan X, Xu H. Fecal microbiota transplantation improves intestinal inflammation in mice with ulcerative colitis by modulating intestinal flora composition and down-regulating NF-kB signaling pathway. Microb Pathog. 2022;173(Pt A):105803. doi:10.1016/j.micpath.2022.105803

[32] Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: Potential therapeutic implications. Dig Liver Dis. 2015;47(12):1007-1012. 

[33] Maura D, Debarbieux L. Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl Microbiol Biotechnol. 2011;90(3):851-859.

[34] Chen ZF, Ai LY, Wang JL, et al. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 2015;10(9):1433-1445.

[35] Rong J, Liu S, Hu C, Liu C. Single probiotic supplement suppresses colitis-associated colorectal tumorigenesis by modulating inflammatory development and microbial homeostasis. J Gastroenterol Hepatol. 2019;34(7):1182-1192.

[36] Fahmy CA, Gamal-Eldeen AM, El-Hussieny EA, et al. Bifidobacterium longum Suppresses Murine Colorectal Cancer through the Modulation of oncomiRs and Tumor Suppressor miRNAs. Nutr Cancer. 2019;71(4):688-700.

[37] Kotzampassi K, Stavrou G, Damoraki G, et al. A Four-Probiotics Regimen Reduces Postoperative Complications After Colorectal Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. World J Surg. 2015;39(11):2776-2783. 

[38] Alam Z, Shang X, Effat K, et al. The potential role of prebiotics, probiotics, and synbiotics in adjuvant cancer therapy especially colorectal cancer. J Food Biochem. 2022;46(10):e14302. 

[39] Yu H, Li XX, Han X, et al. Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol. 2023;14:1126808.

[40] Huang J, Zheng X, Kang W, et al. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer. Front Immunol. 2022;13:874922. 

[41] Dong Y, Zhu J, Zhang M, Ge S, Zhao L. Probiotic Lactobacillus salivarius Ren prevent dimethylhydrazine-induced colorectal cancer through protein kinase B inhibition. Appl Microbiol Biotechnol. 2020;104(17):7377-7389. 

[42] Rosshart SP, Vassallo BG, Angeletti D, et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell. 2017;171(5):1015-1028.e13.