Welcome to Francis Academic Press

Academic Journal of Engineering and Technology Science, 2019, 2(1); doi: 10.25236/AJETS.020016.

Preparation and Photoconductive Properties of WO3 Nanowires

Corresponding Author:
Bing Yu

Department of Electronic Engineering, Jinan University, Guangzhou, Guangdong, 510632, PR China


According to the principle of PVD (Physical Vapor Deposition), a large number of WO3 nanowires having a flat surface and a thickness of 60nm were obtained by a simple one-step method. We characterized the material properties and photoconductivity of WO3 nanowires by AFM, TEM, Raman spectra and found  it has a good photoresponse to the illumination of 405nm light.


Tungsten oxide, Physical Vapor Deposition, Photoconductive

Cite This Paper

Bing Yu, Preparation and Photoconductive Properties of WO3 Nanowires. Academic Journal of Engineering and Technology Science (2019) Vol. 2: 64-70. https://doi.org/10.25236/AJETS.020016.


[1] Devan, R. S., Patil, R. A., Lin, J. H., & Ma, Y. R. (2012). One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Advanced Functional Materials, 22 (16), 3326-3370.
[2] Shrotriya, V., Li, G., Yao, Y., Chu, C. W., & Yang, Y. (2006). Transition metal oxides as the buffer layer for polymer photovoltaic cells. Applied Physics Letters, 88 (7), 073508.
[3] Poizot, P. L. S. G., Laruelle, S., Grugeon, S., Dupont, L., & Tarascon, J. M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407 (6803), 496.
[4] Sawa, A. (2008). Resistive switching in transition metal oxides. Materials today, 11 (6), 28-36.
[5] Yuhas, B. D., Zitoun, D. O., Pauzauskie, P. J., He, R., & Yang, P. (2006). Transition-metal doped zinc oxide nanowires. Angewandte Chemie, 118 (3), 434-437.
[6] Peng, Z., Jiang, W., & Liu, H. (2007). Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis. The Journal of Physical Chemistry C, 111 (3), 1119-1122.
[7] Jeong, Y. G., Han, S., Rhie, J., Kyoung, J. S., Choi, J. W., Park, N., ... & Kim, D. S. (2015). A vanadium dioxide metamaterial disengaged from insulator-to-metal transition. Nano letters, 15 (10), 6318-6323.
[8] Huang, Z. F., Song, J., Pan, L., Zhang, X., Wang, L., & Zou, J. J. (2015). Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Advanced Materials, 27 (36), 5309-5327.
[9] Devan, R. S., Patil, R. A., Lin, J. H., & Ma, Y. R. (2012). One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Advanced Functional Materials, 22 (16), 3326-3370.
[10] Gavrilyuk, A. I. (1999). Photochromism in WO3 thin films. Electrochimica Acta, 44 (18), 3027-3037.
[11] Li, H., Lv, Y., Zhang, X., Wang, X., & Liu, X. (2015). High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Solar Energy Materials and Solar Cells, 136, 86-91.
[12] Chang-Jian, C. W., Cho, E. C., Yen, S. C., Ho, B. C., Lee, K. C., Huang, J. H., & Hsiao, Y. S. (2018). Facile preparation of WO3/PEDOT: PSS composite for inkjet printed electrochromic window and its performance for heat shielding. Dyes and Pigments, 148, 465-473.
[13] Eranna, G. (2016). Metal oxide nanostructures as gas sensing devices. CRC Press.
[14] Kim, S. J., Choi, S. J., Jang, J. S., Kim, N. H., Hakim, M., Tuller, H. L., & Kim, I. D. (2016). Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS nano, 10 (6), 5891-5899.
[15] Xue, Q., Liu, Y., Zhou, Q., Utsumi, M., Zhang, Z., & Sugiura, N. (2016). Photocatalytic degradation of geosmin by Pd nanoparticle modified WO3 catalyst under simulated solar light. Chemical Engineering Journal, 283, 614-621.
[16] Maruyama, T., & Arai, S. (1994). Electrochromic properties of tungsten trioxide thin films prepared by chemical vapor deposition. Journal of the Electrochemical Society, 141 (4), 1021-1024.
[17] Vaddiraju, S., Chandrasekaran, H., & Sunkara, M. K. (2003). Vapor phase synthesis of tungsten nanowires. Journal of the American Chemical Society, 125 (36), 10792-10793.
[18] Badilescu, S., & Ashrit, P. V. (2003). Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ionics, 158 (1-2), 187-197.
[19] Luo, Z., Yang, J., Cai, H., Li, H., Ren, X., Liu, J., & Liang, X. (2008). Preparation of silane-WO3 film through sol–gel method and characterization of photochromism. Thin Solid Films, 516 (16), 5541-5544.
[20] Lu, D. Y., Chen, J., Chen, H. J., Gong, L., Deng, S. Z., Xu, N. S., & Liu, Y. L. (2007). Raman study of thermochromic phase transition in tungsten trioxide nanowires. Applied physics letters, 90 (4), 041919.