Welcome to Francis Academic Press

Academic Journal of Engineering and Technology Science, 2020, 3(6); doi: 10.25236/AJETS.2020.030618.

The Classification of Micro-plastics and Biodegradation of Plastics/Micro-plastics

Author(s)

Yi Liu1, Jianwei Huang2, Jiaqi Jin1, Shenjie Lou1, Chengcheng Shen1, Haojie Zang1 and Lin Wang1, *

Corresponding Author:
Lin Wang
Affiliation(s)

1 Miami College, Henan University, Kaifeng, 475002, China
2 School of Environment and Planning, Henan University, Kaifeng, 475002, China
*Corresponding Author

Abstract

Plastic wastes have been accumulated in the environment, and these plastics finally fragmented into smaller debris. There are three common standards used to classify micro-plastics, which are diameters, origins (primary or secondary), and monomers. In addition, various techniques and methods are applied to examine the changes before and after biodegradation. This paper also introduces several methods used to improve the efficiency of biodegradation. In the end, there is a summary about some progresses of biodegradation of plastics/micro-plastics.

Keywords

Micro-plastics, Biodegradation

Cite This Paper

Yi Liu, Jianwei Huang, Jiaqi Jin, Shenjie Lou, Chengcheng Shen, Haojie Zang and Lin Wang. The Classification of Micro-plastics and Biodegradation of Plastics/Micro-plastics. Academic Journal of Engineering and Technology Science (2020) Vol. 3 Issue 6: 181-190. https://doi.org/10.25236/AJETS.2020.030618.

References

[1] N. Shimpi, M. Borane, S. Mishra M. Kadam (2012). Biodegradation of Polystyrene (PS)-Poly(Lactic Acid) (PLA) Nanocomposites Using Pseudomonas Aeruginosa. Macromolecular Research, vol.20, no.2, p.181-187.
[2] L. Giacomucci, N. Raddadi, M. Soccio, N. Lotti, F. Fava (2020). Biodegradation of Polyvinyl Chloride Plastic Films by Enriched Anaerobic Marine Consortia. Marine Environmental Research, vol.158, p.104949.
[3] H. S. Auta, C. U. Emenike, B. Jayanthi, S. H. Fauziah (2018). Growth Kinetics and Biodeterioration of Polypropylene Microplastics by Bacillus Sp. and Rhodococcus Sp. Isolated from Mangrove Sediment. Marine Pollution Bulletin, vol.127, p.15–21.
[4] C. D. Rummel, A. Jahnke, E. Gorokhova, D. Kühnel (2017). Schmitt-Jansen, M. Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Environmental Science & Technology Letters, vol.4, no.7, p.258-267.
[5] C. G. Avio, S. Gorbi, F. Regoli (2017). Plastics and Microplastics in the Oceans: From Emerging Pollutants to Emerged Threat. Marine Environmental Research, vol.128, p.2–11.
[6] X. Guo, J. Wang (2019). The Chemical Behaviors of Microplastics in Marine Environment: A Review. Marine Pollution Bulletin, vol.142, p.1–14.
[7] D. Eerkes-Medrano, R. C. Thompson, D. C. Aldridge (2015). Microplastics in Freshwater Systems: A Review of the Emerging Threats, Identification of Knowledge Gaps and Prioritisation of Research Needs. Water Research, vol.75, p.63–82.
[8] J. Yuan, J. Ma, Y. Sun, T. Zhou, Y. Zhao, F. Yu (2020). Microbial Degradation and Other Environmental Aspects of Microplastics/Plastics. Science of The Total Environment, vol.715, p.136968.
[9] X. Yu, J. Peng, J. Wang, K. Wang, S. Bao (2016). Occurrence of Microplastics in the Beach Sand of the Chinese Inner Sea: The Bohai Sea. Environmental Pollution, vol. 214, p.722–730.
[10] O. S. Alimi, J. Farner Budarz, L. M. Hernandez, N. Tufenkji (2018). Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol, vol.52, no.4, p.1704–1724.
[11] W. Wang, H. Gao, S. Jin, R. Li, G. Na, The Ecotoxicological Effects of Microplastics on Aquatic Food Web, from Primary Producer to Human: A Review. Ecotoxicology and Environmental Safety, vol.173, p.110–117.
[12] W. Wang, J. Ge, X. Yu, H. Li (2020). Environmental Fate and Impacts of Microplastics in Soil Ecosystems: Progress and Perspective. Science of The Total Environment, vol.708, p.134841.
[13] A. Ammala, S. Bateman, K. Dean, E. Petinakis, P. Sangwan, S. Wong, Q. Yuan, L. Yu, C. Patrick, K. H. Leong (2011). An Overview of Degradable and Biodegradable Polyolefins. Progress in Polymer Science, vol.36, no.8, p.1015–1049.
[14] D. K. A. Barnes, F. Galgani, R. C. Thompson, M. Barlaz (2009). Accumulation and Fragmentation of Plastic Debris in Global Environments. Phil. Trans. R. Soc. B, vol.364, no.1526, p.1985–1998.
[15] M. Shimao (2001). Biodegradation of Plastics. Current Opinion in Biotechnology, vol.12 no.3, p.242–247.
[16] M. Sudhakar, M. Doble, P. S. Murthy, R. Venkatesan (2008). Marine Microbe-Mediated Biodegradation of Low- and High-Density Polyethylenes. International Biodeterioration & Biodegradation, vol.61 no.3, p.203–213.
[17] Y. L. Uscátegui, F. R. Arévalo, L. E. Díaz, M. I. Cobo, M. F. Valero (2016). Microbial Degradation, Cytotoxicity and Antibacterial Activity of Polyurethanes Based on Modified Castor Oil and Polycaprolactone. Journal of Biomaterials Science, Polymer Edition, vol.27, no.18, p.1860–1879.
[18] H. Karan, C. Funk, M. Grabert, M. Oey, B. Hankamer (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, vol.24, no.3, p.237–249.
[19] R. Mao, M. Lang, X. Yu, R. Wu, X. Yang, X. Guo (2020). Aging Mechanism of Microplastics with UV Irradiation and Its Effects on the Adsorption of Heavy Metals. Journal of Hazardous Materials, vol.393, p.122515.
[20] R. Sangeetha Devi, V. Rajesh Kannan, D. Nivas, K. Kannan, S. Chandru, A. Robert Antony (2015), Biodegradation of HDPE by Aspergillus Spp. from Marine Ecosystem of Gulf of Mannar, India. Marine Pollution Bulletin, vol.96, no.1–2, p.32–40.
[21] S. Kumar Sen, S. Raut (2015). Microbial Degradation of Low Density Polyethylene (LDPE): A Review. Journal of Environmental Chemical Engineering, vol.3, no.1, p.462–473.
[22] S. Y. Park, C. G. Kim (2019). Biodegradation of Micro-Polyethylene Particles by Bacterial Colonization of a Mixed Microbial Consortium Isolated from a Landfill Site. Chemosphere, vol.222, p.527–533.
[23] T. Ohuraa, Y. Aoyagib, K. Takagib, Y. Yoshidab, K. Kasuyac, Y. Doi (1999). Biodegradation of poly(3-hydroxyalkanoic acids) fibers and isolation of poly(3-hydroxybutyric acid)-degrading microorganisms under aquatic environments. Polymer Degradation and Stability, vol.63, p.23-29.
[24] H.S. Auta, C.U. Emenike, S.H. Fauziah (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution, vol.231, p.1552-1559.
[25] Y. Yang, J. Yang, W. M. Wu, J. Zhao, Y. Song,; L. Gao, R. Yang,; Jiang, L. (2015). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environ. Sci. Technol., vol.49 no.20, p.12080–12086.
[26] A. Batel, F. Linti, M. Scherer, L. Erdinger, T. Braunbeck, (2016). Transfer of Benzo[ a ]Pyrene from Microplastics to Artemia Nauplii and Further to Zebrafish via a Trophic Food Web Experiment: CYP1A Induction and Visual Tracking of Persistent Organic Pollutants: Trophic Transfer of Microplastics and Associated POPs. Environ Toxicol Chem, vol.35, no.7, p.1656–1666.
[27] P. P. Vimala, L. Mathew (2016). Biodegradation of Polyethylene Using Bacillus Subtilis. Procedia Technology, vol.24, p.232–239.
[28] E. Chiellini, A. Corti, G. Swift (2003). Biodegradation of Thermally-Oxidized, Fragmented Low-Density Polyethylenes. Polymer Degradation and Stability, vol.81, no.2, p.341–351.
[29] A. Paço, K. Duarte, J. P. da Costa, P. S. M. Santos, R. Pereira, M. E. Pereira, A. C. Freitas, A. C. Duarte, T. A. P. Rocha-Santos (2017). Biodegradation of Polyethylene Microplastics by the Marine Fungus Zalerion Maritimum. Science of The Total Environment, vol.586, p.10–15.
[30] T. Volke-Sepúlveda, G. Saucedo-Castañeda, M. Gutiérrez-Rojas, A. Manzur, E. Favela-Torres (2002). Thermally Treated Low Density Polyethylene Biodegradation by Penicillium Pinophilum and Aspergillus Niger: Low Density Polyethylene Biodegradation. J. Appl. Polym. Sci., vol.83 no.2, p.305–314.
[31] H. S. Auta, C. U. Emenike, S. H. Fauziah (2017). Screening of Bacillus Strains Isolated from Mangrove Ecosystems in Peninsular Malaysia for Microplastic Degradation. Environmental Pollution, vol.231, p.1552–1559.
[32] A. J. Mohan, V. C. Sekhar, T. Bhaskar, K. M. Nampoothiri (2016). Microbial Assisted High Impact Polystyrene (HIPS) Degradation. Bioresource Technology, vol.213, p.204–207.
[33] A. Aravinthan, A. Arkatkar, A. A. Juwarkar, M. Doble (2016). Synergistic Growth of Bacillus and Pseudomonas and Its Degradation Potential on Pretreated Polypropylene. Preparative Biochemistry & Biotechnology, vol.46, no.2, p.109–115.
[34] Z. Shah, L. Krumholz, D. F. Aktas, F. Hasan, M. Khattak, A. A. Shah (2013). Degradation of Polyester Polyurethane by a Newly Isolated Soil Bacterium, Bacillus Subtilis Strain MZA-75. Biodegradation, vol.24, no.6, p.865–877.