Academic Journal of Engineering and Technology Science, 2021, 4(1); doi: 10.25236/AJETS.2021.040105.
Xianglei Wang1,*, Yanfang Shi2, Xuedong Zhai3, Buhe Dong4, Yunfei Wang1, Ruifeng Wang1, Shu Sun1, Yupeng Hua1
1. Ordos Institute of Technology, Ordos 017010, China
2. Yijinhuoluo Senior Middle School, Ordos 017200, China
3. Ordos Anxintai Environmental Protection Technology Co., Ltd, Ordos 017010, China
4. Ordos City of Chinese redbud innovation Institute, Ordos 017010, China
*Corresponding Author
Phase-change materials (PCMs) are particularly attractive for latent heat storage because they provide a high energy storage density at a constant temperature, which corresponds to the phase transition temperature of the material. Various techniques have been introduced to enhance the thermal conductivity of PCMs. Expanded graphite (EG) is a common thermal enhancer because of its high thermal conductivity, low density, and chemical inertness. This paper provides a brief introduction of several common techniques for heat transfer enhancement and EG preparation. The present review focuses on studies that examined the preparation and characterization of EG/PCM composites, as well as the simulations and applications of EG/PCM composites in thermal management and thermal energy storage systems. Solution, melt-blending, impregnation, and compression methods are used to prepare the binary system which only contains PCMs and EG. Melt-blending, hot-pressing, impregnation, polymerization, sol-gel, and piercing-solidifying incuber methods are used to prepare the ternary system, which contains PCMs, EG, and matrix. The simulation and application data confirm that EG has obvious heat transfer reinforcement effects in thermal management and thermal energy storage systems.
expanded graphite, phase change materials,heat transfer enhancement,latent heat, thermal energy storage
Xianglei Wang, Yanfang Shi, Xuedong Zhai, Buhe Dong, Yunfei Wang, Ruifeng Wang, Shu Sun, Yupeng Hua. Review on heat transfer enhancement of phase-change materials using expanded graphite for thermal energy storage and thermal management . Academic Journal of Engineering and Technology Science (2021) Vol. 4 Issue 1: 26-61. https://doi.org/10.25236/AJETS.2021.040105.
[1] Raj VAA, Velarj R. Review on free cooling of buildings using phase change materials. Renew Sustain Energ Rev 2010; 14: 2819-2829.
[2] Darkwa K, OCallaghan PW, Tetlow D. Phase-change drywalls in a passive-solar building. Appl Energ 2006; 83: 425-435.
[3] Yagi J, Akiyama T. Storage of thermal energy for effective use of waste heat from industries. J Mater Process Technol 1995; 48:793-804.
[4] Fok SC, Shen W, Tan FL. Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Therm Sci 2010; 49:109-117.
[5] Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 2003; 23: 251-283.
[6] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: material and applications. Energ Convers Manage 2004; 45: 1597-1615.
[7] Sharma SD, Sagara K. Latent heat storage materials and systems: a review. Int J Green Energy 2005; 2: 1-56.
[8] Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energ Rev 2007; 11: 1913-1965.
[9] Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energ Rev 2008; 12: 2438-2458.
[10] Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energ Rev 2009; 13: 2225-2244.
[11] Fan LW, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew Sustain Energ Rev 2011; 15: 24-46.
[12] Abhat A, Aboul-Enein S, Malatidis N. Heat of fusion storage systems for solar heating applications, in: C. Den Quden (Ed.). Thermal Storage of Solar Energy, Martinus Nijhoff, 1981.
[13] Morcos VH. Investigation of a latent heat thermal energy storage system. Solar Wind Technol 1990; 7:197-202.
[14] Padmanabhan PV, Krishna Murthy MV. Outward phase change in a cylindrical annulus with axial fins on the inner tube. Int J Heat Mass Tran 1986; 29:1855-1868.
[15] Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K. Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol Energy 1997; 60: 281-290.
[16] Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K. Heat transfer enhancement in a latent heat storage system. Sol Energy 1999; 65:171-180.
[17] Ismail KAR, Alves CLF, Modesto MS. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng 2001; 21: 53-77.
[18] Siegel R. Solidification of low conductivity material containing dispersed high conductivity particles. Int J Heat Mass Tran 1977; 20: 1087-1089.
[19] Tong X, Khan J, Amin MR. Enhancement of heat transfer by inserting a metal matrix into a phase change material. Numer Heat Tr A-Appl 1996; 30: 125-141.
[20] Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Tran 2001; 44:827-836.
[21] Zhong YJ, Guo QG, Li SZ, Shi JL, Liu L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energ Mat Sol C 2010; 94: 1011-1014.
[22] Fedden AD, Franke ME. Graphitized carbon foam with phase change material for thermal energy storage. AIAA Paper 2006; 3133.
[23] Harris RJ, Leland Q, Du JH, Chow LC. Characterization of paraffin-graphite foam and paraffin-aluminum foam thermal energy storage systems. AIAA Paper 2006; 3132.
[24] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/ expanded graphite composite as phase change material. Appl Therm Eng 2007; 27: 1271-1277.
[25] Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energ Mat Sol C 2009; 93: 571-576.
[26] Karaipekli A, Sari A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew Energ 2007; 32: 2201-2210.
[27] Zhao JG, Guo Y, Feng F, Tong QH, Qv WS, Wang HQ. Microstructure and thermal properties of a paraffin/expanded graphite phase-change composite for thermal storage. Renew Energ 2011; 36: 1339-1342.
[28] Fukai J, Kanou M, Kodama Y, Miyatake O. Thermal conductivity enhancement of energy storage media using carbon fibers. Energ Convers Manage 2000; 41: 1543-1556.
[29] Fukai J, Hamada YC, Morozumi Y, Miyatake O. Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int J Heat Mass Tran 2002; 45: 4781-4792.
[30] Fukai J, Morozumi Y, Hamada Y, Miyatake O. Transient response of thermal energy storage unit using carbon fibers as thermal conductivity promoter. Proceedings of the 3rd European Thermal Sciences Conference, Pisa (Italy), 2000.
[31] Cheng WL, Zhang RM, Xie K, Liu N, Wang J. Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties. Sol Energ Mat Sol C 2010; 94:1636-1642.
[32] Wang XL, Guo QG, Wang JZ, Zhong YJ, Wang LY, Wei XH, Liu L. Thermal conductivity enhancement of form-stable phase-change composites by milling of expanded graphite, micro-capsules and polyethylene. Renew Energ 2013; 60: 506-509.
[33] Wei XH, Liu L, Zhang JX, Shi JL, Guo QG. Synthesis of HClO4-GICs and the performance of flexible graphite produced from them. New Carbon Mater (China) 2007; 22: 342-348.
[34] Fukushima H. Graphite nanoreinforcements in polymer nanocomposites. Ph.D Thesis, Michigan State University, East Lansing, MI, USA, 2003.
[35] Xia L, Zhang P, Wang RZ. Preparation and thermal characterization of expanded graphite/ paraffin composite phase change material. Carbon 2010; 48:2538-2548.
[36] Pincemin S, Py X, Olives R, Christ M, Oettinger O. Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. J Sol Energ-T ASME 2008; 130:011005.
[37] Inagaki M, Nagata T, Suwa T, Toyoda M. Sorption kinetics of various oils onto exfoliated graphite. New Carbon Mater 2006; 21: 98-102.
[38] Xiao JB, Huang J, Zhu PP, Wang CH, Li XX. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim Acta 2014; 587:52-58.
[39] Li YF, Zhang D. Thermal conductivity anisotropy of expanded graphite/ LiCl-NaCl phase change material. J Funct Mater (China) 2013; 16:2409-2415.
[40] Zhang T, Zeng L, Zhang D. Improvement of thermal properties of hybrid inorganic salt phase change materials by expanded graphite and graphene. Inorg Chem Ind 2010; 42: 24-26.
[41] Zhong LM, Zhang XW, Luan Y, Wang G, Feng YH, et al. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite. Sol Energy 2014; 107: 63-73.
[42] Li YF, Zhang D. Study on high temperature phase change composites of NaNO3-KNO3/ expanded graphite by saturated water solution method. J Funct Mater 2013; 10:1451-1456.
[43] Wang CY, Feng LL, Wei L, Zheng J, Tian WH, Li XG. Shape-stabilized phase change materials based on polyethylene glycol/ porous carbon composite: The influence of the pore structure of the carbon materials. Sol Energ Mat Sol C 2012; 105: 21-26.
[44] Zeng JL, Gan J, Zhu FR, Yu SB, Xiao ZL, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energ Mat Sol C 2014; 127: 122-128.
[45] Xiang JL, Lawrence TD. Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energ Mat Sol C 2011; 95: 1811-1818.
[46] Kang D, Xi P, Duan YQ, Gu XH, et al. Study on polyethylene glyol/ expanded graphite phase change composites for thermal storage. New Chem Mater 2011; 39(3): 106-109.
[47] Xia L, Zhang P. Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage. Sol Energ Mat Sol C 2011; 95: 2246-2254.
[48] Huang ZW, Gao XN, Xu T, Fang YT, et al. Thermal property measurement and heat storage analysis of LiNO3/KCl -expanded graphite composite phase change material. Appl Energ 2014; 115: 265-271.
[49] Fang GY, Li H, Chen Z, Liu X. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy. 2010; 35:4622-4626.
[50] Li H, Liu X, Fang GY. Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials. Appl Phys A-Mater 2010; 100:1143-1148.
[51] Yang XJ, Yuan YP, Zhang N, Cao XL, Liu C. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy 2014; 99:259-266.
[52] Huang J, Wang TY, Wang CH, Rao ZH. Exfoliated graphite/paraffin nanocomposites as phase change materials for thermal energy storage application. Mater Res Innov 2011; 15(6): 422-427.
[53] Hu XD, Gao XN, Li DL, Chen ST. Performance of paraffin/ expanded graphite composite phase change materials. CIESC Journal. 2013:64; 3831-3837.
[54] Sumin K, Lawrence TD. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energ Mat Sol C 2009; 93:136-142.
[55] Zhang ZG, Fang XM. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energ Convers Manage 2006; 47: 303-310.
[56] Zhou D, Zhao CY. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng 2011; 31:970-977.
[57] Zhao CY, Zhou D, Wu ZG. Heat transfer of phase change materials (PCMs) in porous materials. Front Energy 2011; 5(2):174-180.
[58] Zhang N, Yuan YP, Du YX, Cao XL, et al. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage. Energy 2014; 78:950-956.
[59] Yuan YG, Yuan YP, Zhang N, Du YX, Cao XL. Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage. Mater Lett 2014; 125:154-157.
[60] Zhang N, Yuan YP, Wang X, Cao XL, et al. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J 2013; 231:214-219.
[61] Sari A, Karaipekli A, Kaygusuz K. Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage. Energ Source Part A 2008; 30: 464-474.
[62] Ma F, Li Y, Cheng LY, Chen MH. Preparation and properties of octadecane-palmitic acid/expanded graphite phase change energy storage materials. J Aeronaut Mater (China) 2010; 30(3): 66-69.
[63] Zhou JH, Zhang L, Shen XL. Studies on properties of nano-SiO2/silicone modified polyacrylate composite. J Funct Mater (China) 2010; 41(suppl): 180-183.
[64] Wu QS, Qiu Y, Li SP, Zhu HJ. Study of capric acid and hexadecanol/expanded graphite composite as phase change material for thermal energy storage. J Build Mater (China) 2014; 17(1):84-88.
[65] James H, Shane A, Robert J, Framingham A, Raymond A. Flexible graphite material of expanded particles compressed together, US Patent 3404061, 1968.
[66] Py X, Olives R, Mauran S. Paraffin/ porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Tran 2001; 44:2727-2737.
[67] Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng 2006; 26:1652-1661.
[68] Zhao JG, Guo QG, Liu L, Wei XH, Zhang JX. Polyethylene glycol/expanded graphite phase change composites for thermal storage. Mod Chem Ind (China) 2008; 28(9): 46-47.
[69] Zhong YJ, Li SZ, Wei XH, Liu ZJ, Guo QG, et al. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon 2010; 48: 300-304.
[70] Zhong YJ, Guo QG, Li L, Wang XL, et al. Heat transfer improvement of Wood’s alloy using compressed expanded natural graphite for thermal energy storage. Sol Energ Mat Sol C 2012, 100: 263-267.
[71] Wang XL, Guo QG, Zhong YJ, Wei XH, et al. Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage. Renew Energ 2013; 51: 241-246.
[72] Zoubir A, Jéréme L, Elena PDB. KNO3/NaNO3 –Graphite materials for thermal energy storage at high temperature: PartI.- Elaboration methods and thermal properties. Appl Therm Eng 2010; 30:1580-1585.
[73] Couto Aktay K S, Tamme R, Müller-Steinhagen H. Thermal Conductivity of High-Temperature Multicomponent Materials with Phase Change. Int J Thermophys 2008; 29: 678-692.
[74] Wang SP, Qin P, Fang XM, Zhang ZG, Wang SF, et al. A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications. Sol Energy 2014; 99:283-290.
[75] Ling ZY, Chen JJ, Xu T, Fang XM, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energ Convers Manage 2015; 102: 202-208.
[76] Inaba H, Tu P. Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat Mass Transfer 1997; 32: 307-312.
[77] Sari A. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties. Energ Convers Manage 2004; 45: 2033-2042.
[78] Cheng WL, Liu N, Wu WF. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity. Appl Therm Eng 2012; 36:345-352.
[79] Almaadeed M.A, Labidi S, Krupa I, Karkri M. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends. Thermochim Acta 2015; 600:35-44.
[80] Wang XL, Guo QG, Wang LY, Wei XH, et al. Thermal conductivity enhancement of form-stable HDPE/ paraffin by expanded graphite addition. J Funct Mater 2013; 23: 3401-3404.
[81] Zhang P, Hu Y, Song L, Ni JX, Xing WY, Wang J. Effect of expanded graphite on properties of high-density polyethylene/ paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Sol Energ Mat Sol C 2010; 94: 360-365.
[82] Zhang P, Song L, Lu HD, Wang J, Hu Y. The influence of expanded graphite on thermal properties for paraffin/ high density polyethylene/ chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energ Convers Manage 2010; 51: 2733-2737.
[83] Sittisart P, Farid MM. Fire retardants for phase change materials. Appl Energ 2011; 88: 3140-3145.
[84] Cai YB, Wei QF, Huang FL, Lin SL, et al. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew Energ 2009; 34: 2117-2123.
[85] Mhike W, Focke WW, Mofokeng JP, Luyt AS. Thermally conductive phase change materials for energy storage based on low-density polyethylene, soft Fischer Tropsch wax and graphite. Thermochim Acta 2012; 527: 75-82.
[86] Zhang XM, Deng PF, Feng RX, Song J. Novel gelatinous shape-stabilized phase change materials with high heat storage density. Sol Energ Mat Sol C 2011; 95: 1213-1218.
[87] Xiao M, Feng B, Gong K. Thermal performance of a high conductive shape stabilized thermal storage material. Sol Energ Mat Sol C 2001; 69: 293-296.
[88] Xiao M, Feng B, Gong K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energ Convers Manage 2002; 43: 103-108.
[89] Mochane M.J, Luyt A.S. Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends. J Mater Sci 2015; 50:3485-3494.
[90] Mochane M.J, Luyt A.S. The Effect of Expanded Graphite on the Thermal Stability, Latent Heat, and Flammability Properties of EVA/Wax Phase Change Blends. Polym Eng Sci 2015; 55(6): 1255-1262.
[91] Mochane M.J, Luyt A.S. The Effect of Expanded Graphite on the Physical Properties of Conductive EVA/Wax Phase Change Blends for Thermal Energy Storage. Polym Composite 2016; 37(10): 3025-3032.
[92] Li M, Wu ZS. Preparation and performance of highly conductive phase change materials prepared with paraffin, expanded graphite, and diatomite. Int J Green Energy 2011; 8: 121-129.
[93] Kao HT, Li M, Lv XW, Tan JM. Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material. J Therm Anal Calorim 2012; 107: 299-303.
[94] Shin HK, Park M, Kim HY, Park SJ. Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials. Appl Therm Eng 2015; 75: 978-983.
[95] Duan ZJ, Zhang HZ, Sun LX, Cao Z, et al. CaCl2-6H2O/Expanded graphite composite as form-stable phase change materials for thermal energy storage. J Therm Anal Calorim 2014; 115:111-117.
[96] Li JL, Xue P, Ding WY, Han JM, Sun GL. Micro-encapsulated paraffin/ high-density polyethylene/ wood flour composite as form-stable phase change material for thermal energy storage. Sol Energ Mat Sol C 2009; 93: 1761-1767.
[97] Jeong SG, Chang SJ, We S, Kim S. Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets. Sol Energ Mat Sol C 2015; 139: 65-70.
[98] Cai YB, Gao CT, Zhang T, Zhang Z, et al. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats. Renew Energ 2013; 57: 163-170.
[99] Zhang L, Zhu JQ, Zhou WB, Wang J, Wang Y. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials. Energy 2012; 39: 294-302.
[100] Zeng JL, Zheng SH, Yu SB, Zhu FY, et al. Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials. Appl Energ 2014; 115: 603-609.
[101] Li M, Wu ZS, Tan JM. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol-gel method. Appl Energ 2012; 92: 456-461.
[102] Li W, Zhang R, Jiang N, Tang XF, et al. Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage. Energy 2013; 57: 607-614.
[103] Zhang ZG, Shi GQ, Wang SP, Fang XM, Liu XH. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renew Energ 2013; 50: 670-675.
[104] Alrashan A, Mayyas A. T, Al-Hallaj S. Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs. J Mater Process Tech 2010; 210(1): 174-179.
[105] Liu X, Shao P, Yang Y. Thermal expansion pressure test of paraffin-expanded graphite composite phase change materials under constraint. J Lanzhou University (Natural Sciences) 2012; 48(2): 122-126.
[106] Yvan D, Daniel RR, Nizar BS, Stéphane L, et al. A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energ Rev 2011; 15: 112-130.
[107] Lu XW, Kao HT, Li M. Thermal analysis in phase transition process of expanded graphite/ paraffin wax composite phase change materials. Materials Review B (China): 2011; 25: 131- 134.
[108] Pincemin S, Olives R, Py X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energ Mat Sol C 2008; 92: 603-613.
[109] Andrew M, Said AH. Simulation of passive thermal management system for lithium-ion battery packs. J Power Sources 2005; 141: 307-315.
[110] Lin CJ, Xu SC, Chang GF, Liu JL. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets. J Power Sources 2015; 275: 742-749.
[111] Wang XL, Guo QG, Zhong YJ, Wang LY, et al. Numerical simulation of the effect of heat conductive fillers on the heat conduction behavior of paraffin phase change energy storage system. New Carbon Materials (China) 2014; 29: 0149-0155.
[112] Luo JF, Yin HW, Li WY, Xu ZJ, Shao ZZ, et al. Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material. Int J Heat Mass Tran 2015; 84: 237-244.
[113] Gao XN, Li DL, Sun T, Cao X, He WX. Performance of temperature-controlled electronic heat sink with composite paraffin/expanded graphite phase change material. Journal of south china university of technology 2012; 40(1): 7-12.
[114] Jérôme L, Zoubir A, Elena PDB. KNO3/ NaNO3- Graphite materials for thermal energy storage at high temperature: Part II. –Phase transition properties. Appl Therm Eng 2010, 30: 1586-1593.
[115] Li WW, Cheng WL, Xie B, Liu N, Zhang LS. Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energ Convers Manage 2017; 149: 1-12.
[116] Yuan YP, Zhang N, Li TY, Cao XL, Long WY. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study. Energy 2016; 97: 488-497.
[117] He JS, Yang XQ, Zhang GQ, A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management. Appl Therm Eng 2019; 148: 984-991.
[118] Tao ZC, Wang HB, Liu JQ, Zhao WG, Liu ZJ, Guo QG. Dual-level packaged phase change materials -thermal conductivity and mechanical properties. Sol Energ Mat Sol C 2017; 169: 222-225.
[119] Wang TY, Wang SF, Geng LX, Fang YT. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network. Appl Energ 2016; 179: 601-608.
[120] Zhang SL, Wu W, Wang SF. Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals. Energy 2018; 161: 508-516.
[121] Angelo G, Jiang X. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite. J Power Sources 2016; 315: 127-139.
[122] Ling ZY, Cao JH, Zhang WB, Zhang ZG, Gao XN. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Appl Energ 2018; 228: 777-788.
[123] Huang X,Alva G, Liu LK, Fang GY. Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials. Sol Energ Mat Sol C 2017; 166: 157-166.
[124] Huang ZW, Zhai DH, Gao XN, Xu T, Fang YT, Zhang ZG. Theoretical study on effective thermal conductivity of salt/expanded graphite composite material by using fractal method. Appl Therm Eng 2015; 86: 309-317.
[125] Wang ZY, Li XX, Zhang GQ, Lv YF, Wang C, He FQ, Yang CZ, Yang CX. Thermal management investigation for lithium-ion battery module with different phase change materials. RSC Adv 2017; 7: 42909-42918.
[126] Ling ZY, Wen XY, Zhang ZG, Fang XM, Gao XN. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures. Energy 2018; 144: 977-983.
[127] Lv YF, Yang XQ, Li XX, Zhang GQ, Wang ZY, Yang CZ. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins. Appl Energ 2016; 178: 376-382.
[128] Liu CZ, Zhang X, Lv PZ, Li YM, Rao ZH. Experimental study on the phase change and thermal properties of paraffin/carbon materials based thermal energy storage materials. Phase Transitions: A Multinational Journal 2017; 90(7): 717-731.
[129] Fang YT, Ding YF, Tang YF, Liang XH, Jin C, Wang SF, Gao XN, Zhang ZG. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating. Appl Therm Eng 2019; 150: 1177-1185.