Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2021, 2(1); doi: 10.25236/AJMC.2021.020103.

P-type Doping of Broad-band Nitride Semiconductors

Author(s)

Yaqi Liu1, Xichen Cai2, Lechen Liu3, Chenguang Yang4

Corresponding Author:
Yaqi Liu
Affiliation(s)

1University College London, London, United Kingdom

2Southwest Jiaotong University, Chengdu, Sichuan, China

3Changsha New Channel-Changjun High school, Changsha, Hunan, China

4Chengdu University of Information Technology, Chengdu, Sichuan, China

These authors contributed equally to this work

Abstract

GaN-based optoelectronic devices have been an important development direction for semiconductors and have been applied in several fields. P-type GaN thin film implementation is the core process for optoelectronic devices, and a lot of breakthrough results have been achieved in p-GaN research. For example, Si and Mg are used as the main doping elements. However, more effective doping of GaN materials is needed in order to make GaN materials play a greater electrical and optical advantage. In this paper, we take p-GaN as the main object of study and outline the conditions that need to be satisfied for effective doping of GaN materials. Emphasizing several factors that make the quality of p-type materials of GaN a bottleneck for application development, the results achieved in p-GaN research in recent years are presented.

Keywords

Semiconductors, Gan Material, P-type Doping

Cite This Paper

Yaqi Liu, Xichen Cai, Lechen Liu, Chenguang Yang. P-type Doping of Broad-band Nitride Semiconductors. Academic Journal of Materials & Chemistry (2021) Vol. 2, Issue 1: 13-19. https://doi.org/10.25236/AJMC.2021.020103.

References

[1] Strite, S.; Morkoc, H., GAN, AIN, AND INN - A REVIEW. J. Vac. Sci. Technol. B 1992, 10 (4), 1237-1266.

[2] Morkoc, H.; Strite, S.; Gao, G. B.; Lin, M. E.; Sverdlov, B.; Burns, M., LARGE-BAND-GAP SIC, III-V NITRIDE, AND II-VI ZNSE-BASED SEMICONDUCTOR-DEVICE TECHNOLOGIES. Journal of Applied Physics 1994, 76 (3), 1363-1398.

[3] Mohammad, S. N.; Morkoc, H., Progress and prospects of group-III nitride semiconductors. Progress in Quantum Electronics 1996, 20 (5-6), 361-525.

[4] Maruska, H. P.; Tietjen, J. J., PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTALLINE GAN. Applied Physics Letters 1969, 15 (10), 327-&.

[5] Nakamura, S.; Mukai, T.; Senoh, M.; Iwasa, N., THERMAL ANNEALING EFFECTS ON P-TYPE MG-DOPED GAN FILMS. Japanese Journal of Applied Physics Part 2-Letters 1992, 31 (2B), L139-L142.

[6] Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I., P-TYPE CONDUCTION IN MG-DOPED GAN TREATED WITH LOW-ENERGY ELECTRON-BEAM IRRADIATION (LEEBI). Japanese Journal of Applied Physics Part 2-Letters & Express Letters 1989, 28 (12), L2112-L2114.

[7] Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J. R.; Weimann, N. G.; Chu, K.; Murphy, M.; Sierakowski, A. J.; Schaff, W. J.; Eastman, L. F.; Dimitrov, R.; Mitchell, A.; Stutzmann, M., Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of Applied Physics 2000, 87 (1), 334-344.

[8] Pearton, S. J.; Zolper, J. C.; Shul, R. J.; Ren, F., GaN: Processing, defects, and devices. Journal of Applied Physics 1999, 86 (1), 1-78.

[9] Van de Walle, C. G.; Neugebauer, J., First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of Applied Physics 2004, 95 (8), 3851-3879.

[10] Ambacher, O., Growth and applications of Group III nitrides. Journal of Physics D-Applied Physics 1998, 31 (20), 2653-2710.

[11] Verma, J.; Simon, J.; Protasenko, V.; Kosel, T.; Xing, H. G.; Jena, D., N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping. Applied Physics Letters 2011, 99 (17).

[12] Zhang, L.; Ding, K.; Liu, N. X.; Wei, T. B.; Ji, X. L.; Ma, P.; Yan, J. C.; Wang, J. X.; Zeng, Y. P.; Li, J. M., Theoretical study of polarization-doped GaN-based light-emitting diodes. Applied Physics Letters 2011, 98 (10).

[13] Simon, J.; Protasenko, V.; Lian, C.; Xing, H.; Jena, D., Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures. Science 2010, 327 (5961), 60-64.

[14] Li, J, M; Liu, Z; Liu, Z, Q; Yan, J, C; Wei, T, B; Yi, X, Y; Wang, J, X, Advances and prospects in nitrides based light-emitting-diodes. Journal of Semiconductors 2016, 37 (6), 061001_01-061001_14.

[15] Gotz, W.; Johnson, N. M.; Walker, J.; Bour, D. P.; Amano, H.; Akasaki, I., HYDROGEN PASSIVATION OF MG ACCEPTEOS IN GAN GROWN BY METALORGANIC CHEMICAL-VAPOR-DEPOSITION. Applied Physics Letters 1995, 67 (18), 2666-2668.

[16] Lee, J. W.; Pearton, S. J.; Zolper, J. C.; Stall, R. A., Effect of hydrogen on Ca and Mg acceptors in GaN. 1996; Vol. 96, p 100-109.

[17] Edmonds, K. W.; Novikov, S. V.; Sawicki, M.; Campion, R. P.; Staddon, C. R.; Giddings, A. D.; Zhao, L. X.; Wang, K. Y.; Dietl, T.; Foxon, C. T.; Gallagher, B. L., p-type conductivity in cubic (Ga,Mn)N thin films. Applied Physics Letters 2005, 86 (15).

[18] Korotkov, R. Y.; Gregie, J. M.; Wessels, B. W., Electrical properties of p-type GaN : Mg codoped with oxygen. Applied Physics Letters 2001, 78 (2), 222-224.

[19] Gotz, W.; Kern, R. S.; Chen, C. H.; Liu, H.; Steigerwald, D. A.; Fletcher, R. M., Hall-effect characterization of III-V nitride semiconductors for high efficiency light emitting diodes. Materials Science and Engineering B-Solid State Materials for Advanced Technology 1999, 59 (1-3), 211-217.

[20] Van de Walle, C. G.; Stampfl, C.; Neugebauer, J.; McCluskey, M. D.; Johnson, N. M., Doping of AlGaN alloys. Mrs Internet Journal of Nitride Semiconductor Research 1999, 4, art. no.-G10.4.

[21] Mireles, F.; Ulloa, S. E., Acceptor binding energies in GaN and AlN. Physical Review B 1998, 58 (7), 3879-3887.

[22] Nakamura, S.; Iwasa, N.; Senoh, M.; Mukai, T., HOLE COMPENSATION MECHANISM OF P-TYPE GAN FILMS. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1992, 31 (5A), 1258-1266.

[23] Kozodoy, P.; Xing, H. L.; DenBaars, S. P.; Mishra, U. K.; Saxler, A.; Perrin, R.; Elhamri, S.; Mitchel, W. C., Heavy doping effects in Mg-doped GaN. Journal of Applied Physics 2000, 87 (4), 1832-1835.

[24] Boguslawski, P.; Briggs, E. L.; Bernholc, J., NATIVE DEFECTS IN GALLIUM NITRIDE. Physical Review B 1995, 51 (23), 17255-17258.

[25] Kaufmann, U.; Schlotter, P.; Obloh, H.; Kohler, K.; Maier, M., Hole conductivity and compensation in epitaxial GaN : Mg layers. Physical Review B 2000, 62 (16), 10867-10872.

[26] Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Sugimoto, Y.; Kiyoku, H., Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Applied Physics Letters 1996, 69 (26), 4056-4058.

[27] Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y., InGaN-based multi-quantum-well-structure laser diodes. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 1996, 35 (1B), L74-L76.

[28] Waki, I.; Fujioka, H.; Oshima, M.; Miki, H.; Fukizawa, A., Low-temperature activation of mg-doped GaN using Ni films. Applied Physics Letters 2001, 78 (19), 2899-2901.

[29] Kuo, C. H.; Chang, S. J.; Su, Y. K.; Chen, J. F.; Wu, L. W.; Sheu, J. K.; Chen, C. H.; Chi, G. C., InGaN/GaN light emitting diodes activated in O-2 ambient. Ieee Electron Device Letters 2002, 23 (5), 240-242.

[30] Mazalov, A. V.; Sabitov, D. R.; Kureshov, V. A.; Padalitsa, A. A.; Marmalyuk, A. A.; Akchurin, R. K., Research of acceptor impurity thermal activation in GaN: Mg epitaxial layers. Modern Electronic Materials 2016, 2 (2), 45-47.

[31] Nakashima, T.; Kano, E.; Kataoka, K.; Arai, S.; Sakurai, H.; Narita, T.; Sierakowski, K.; Bockowski, M.; Nagao, M.; Suda, J.; Kachi, T.; Ikarashi, N., Enhanced activation of Mg ion-implanted GaN at decreasing annealing temperature by prolonging duration. Applied Physics Express 2021, 14 (1).

[32] Hull, B. A.; Mohney, S. E.; Venugopalan, H. S.; Ramer, J. C., Influence of oxygen on the activation of p-type GaN. Applied Physics Letters 2000, 76 (16), 2271-2273.

[33] Activation of Hydrogen-Passivated Mg in GaN-Based Light Emitting Diode Annealing with Minority-Carrier Injection. Chinese Physics Letters 2009, 26 (1), 249-251.

[34] Wen, T. C.; Lee, S. C.; Lee, W. I.; Chen, T. Y.; Chan, S. H.; Tsang, J. S., Activation of p-type GaN in a pure oxygen ambient. Japanese Journal of Applied Physics Part 2-Letters 2001, 40 (5B), L495-L497.

[35] Kuo, C. H.; Chang, S. J.; Su, Y. K.; Wu, L. W.; Sheu, J. K.; Chen, C. H.; Chi, G. C., Low temperature activation of Mg-doped GaN in O-2 ambient. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2002, 41 (2A), L112-L114.

[36] Aluri, G. S.; Gowda, M.; Mahadik, N. A.; Sundaresan, S. G.; Rao, M. V.; Schreifels, J. A.; Freitas, J. A., Jr.; Qadri, S. B.; Tian, Y. L., Microwave annealing of Mg-implanted and in situ Be-doped GaN. Journal of Applied Physics 2010, 108 (8).

[37] Matlock, D. M.; Zvanut, M. E.; Wang, H. Y.; Dimaio, J. R.; Davis, R. F.; Van Nostrand, J. E.; Henry, R. L.; Koleske, D.; Wickenden, A., The effects of oxygen, nitrogen, and hydrogen annealing on Mg acceptors in GaN as monitored by electron paramagnetic resonance spectroscopy. Journal of Electronic Materials 2005, 34 (1), 34-39.

[38] Strite, S.; Pelzmann, A.; Suski, T.; Leszczynski, M.; Jun, J.; Rockett, A.; Kamp, M.; Ebeling, K. J., Efficient optical activation of ion-implanted Zn acceptors in GaN by annealing under 10 kbar N-2 overpressure. Mrs Internet Journal of Nitride Semiconductor Research 1997, 2 (13-15), art. no.-15.

[39] Hu, X.-L.; Wang, H.; Zhang, X.-C., Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN. Nanoscale Research Letters 2015, 10.

[40] Burchard, A.; Haller, E. E.; Stotzler, A.; Weissenborn, R.; Deicher, M.; Collaboration, I., Annealing of ion-implanted GaN. Physica B-Condensed Matter 1999, 273-4, 96-100.

[41] Suvkhanov, A.; Parikh, N.; Usov, I.; Hunn, J.; Withrow, S.; Thomson, D.; Gehrke, T.; Davis, R. F.; Krasnobaev, L. Y., Influence of annealing conditions on dopant activation of Si+ and Mg+ implanted GaN. In Silicon Carbide and Related Materials - 1999 Pts, 1 & 2, Carter, C. H.; Devaty, R. P.; Rohrer, G. S., Eds. 2000; Vol. 338-3, pp 1615-1618.

[42] Horng, R. H.; Wuu, D. S.; Lien, Y. C.; Lan, W. H., Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Applied Physics Letters 2001, 79 (18), 2925-2927.

[43] Chen, C. C.; Yen, J. L.; Yang, Y. J.; Ieee, I., The effect of Mg diffusion on the contact resistance of low doped p-GaN. 2001; p 536-537.

[44] Jan, J. C.; Asokan, K.; Chiou, J. W.; Pong, W. F.; Tseng, P. K.; Chen, L. C.; Chen, F. R.; Lee, J. F.; Wu, J. S.; Lin, H. J.; Chen, C. T., X-ray absorption spectroscopy investigations on oxidized Ni/Au contacts to p-GaN. Journal of Synchrotron Radiation 2001, 8, 827-829.

[45] Maruyama, T.; Hagio, Y.; Miyajima, T.; Kijima, S.; Nanishi, Y.; Akimoto, K., Effects of annealing on the interface properties between Ni and p-GaN. Physica Status Solidi a-Applications and Materials Science 2001, 188 (1), 375-378.

[46] Miyachi, M.; Tanaka, T.; Kimura, Y.; Ota, H., The activation of Mg in GaN by annealing with minority-carrier injection. Applied Physics Letters 1998, 72 (9), 1101-1103.

[47] Miyachi, M.; Ota, H.; Kimura, Y.; Watanabe, A.; Tanaka, T.; Takahashi, H.; Chikuma, K., GaN-based laser diodes processed by annealing with minority-carrier injection. Japanese Journal of Applied Physics Part 2-Letters 1999, 38 (11A), L1237-L1239.

[48] Lee, I. H.; Joo, B. S.; Kim, H. J.; Yun, Y. S.; Jang, S. Y.; Kang, M. G.; Kang, C. Y.; Park, B.-G.; Han, M.; Chang, Y. J., Excimer laser annealing effects on AlGaN/GaN heterostructures. Current Applied Physics 2016, 16 (6), 628-632.

[49] Kim, D. J.; Kim, H. M.; Han, M. G.; Moon, Y. T.; Lee, S.; Park, S. J., Activation of Mg acceptor in GaN : Mg with pulsed KrF (248 nm) excimer laser irradiation. Physica Status Solidi B-Basic Research 2001, 228 (2), 375-378.

[50] Chang, S. J.; Su, Y. K.; Tsai, T. L.; Chang, C. Y.; Chiang, C. L.; Chang, C. S.; Chen, T. P.; Huang, K. H., Acceptor activation of Mg-doped GaN by microwave treatment. Applied Physics Letters 2001, 78 (3), 312-313.

[51] Tsai, T. L.; Chang, C. Y.; Chiang, C. L.; Chang, C. S.; Jong, C. S.; Chen, T. P.; Huang, K. H.; Ipap; Ipap, I., Acceptor activation of Mg-doped GaN by microwave treatment. 2000; Vol. 1, p 744-745.

[52] Lee, H. H.; Hong, G. C.; Kim, B. J.; Sadasivam, K. G.; Lee, J. K.; Ryu, S.-W.; Son, S. J.; Kwon, K.-W.; Kim, Y.-H., p-GaN Activation by Electrochemical Potentiostatic Method. Electrochemical and Solid State Letters 2010, 13 (4), H122-H124.

[53] Kaufmann, U.; Kunzer, M.; Maier, M.; Obloh, H.; Ramakrishnan, A.; Santic, B.; Schlotter, P., Nature of the 2.8 eV photoluminescence band in Mg doped GaN. Applied Physics Letters 1998, 72 (11), 1326-1328.

[54] Obloh, H.; Bachem, K. H.; Kaufmann, U.; Kunzer, M.; Maier, M.; Ramakrishnan, A.; Schlotter, P., Self-compensation in Mg doped p-type GaN grown by MOCVD. Journal of Crystal Growth 1998, 195 (1-4), 270-273.

[55] Kaufmann, U.; Merz, C.; Santic, B.; Niebuhr, R.; Obloh, H.; Bachem, K. H., Origin of the Q = 11 meV bound exciton in GaN. Materials Science and Engineering B-Solid State Materials for Advanced Technology 1997, 50 (1-3), 109-112.

[56] Jiang, L.; Liu, J.; Tian, A.; Ren, X.; Huang, S.; Zhou, W.; Zhang, L.; Li, D.; Zhang, S.; Ikeda, M.; Yang, H., Influence of substrate misorientation on carbon impurity incorporation and electrical properties of p-GaN grown by metalorganic chemical vapor deposition. Applied Physics Express 2019, 12 (5).

[57] Wu, S.; Yang, X.; Zhang, Q.; Shang, Q.; Huang, H.; Shen, J.; He, X.; Xu, F.; Wang, X.; Ge, W.; Shen, B., Direct evidence of hydrogen interaction with carbon: C-H complex in semi-insulating GaN. Applied Physics Letters 2020, 116 (26).

[58] Liu, S.-T.; Zhao, D.-G.; Yang, J.; Jiang, D.-S.; Liang, F.; Chen, P.; Zhu, J.-J.; Liu, Z.-S.; Li, X.; Liu, W.; Xing, Y.; Zhang, L.-Q., The residual C concentration control for low temperature growth p-type GaN. Chinese Physics B 2017, 26 (10).

[59] Zhang, Y.; Liang, F.; Zhao, D.; Jiang, D.; Liu, Z.; Zhu, J.; Yang, J.; Liu, S., Hydrogen Can Passivate Carbon Impurities in Mg-Doped GaN. Nanoscale Research Letters 2020, 15 (1).