Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2022, 4(1); doi: 10.25236/FMSR.2022.040103.

Tumor-Associated Macrophages as Treatment Target in Colorectal Cancer

Author(s)

Dawang Wang1, Feixue Feng2, Yanxia Ma2

Corresponding Author:
Yanxia Ma
Affiliation(s)

1Academy of Medical Technology of Shaanxi University of Chinese Medicine, Xianyang, China

2Department of Laboratory Medicine, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China


Abstract

Colorectal cancer (CRC) is one of the common malignant tumors in the digestive tract, and its treatment and prognosis are affected by many factors. Macrophages are cells that participate in innate immunity. Macrophages are cells that participate in innate immunity, maintain the body and resist the invasion of foreign pathogens, and play a supporting role in different organs and tissues. In the tumor microenvironment (TME), macrophages are called tumor-associated macrophages (TAMs), and they play an important role in tumor cell proliferation, metastasis, angiogenesis, and immunosuppression. In this article, we reviewed the interaction between TAMs and tumor cells, discussed the origin and polarization of TAMs, and described the role of TAMs in tumorigenesis and development, invasion and metastasis, and immunosuppression. Finally, we briefly summarized tumor treatment options targeting TAMs to provide new ideas for subsequent tumor research and treatment.

Keywords

Colorectal cancer, Tumor-associated macrophages, Tumor progression, Target treatmen

Cite This Paper

Dawang Wang, Feixue Feng, Yanxia Ma. Tumor-Associated Macrophages as Treatment Target in Colorectal Cancer. Frontiers in Medical Science Research (2022) Vol. 4, Issue 1: 12-18. https://doi.org/10.25236/FMSR.2022.040103.

References

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71, 209-249. 

[2] Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Retrieved Dec 16, 2020, from https://www.iarc.fr/fr/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/.

[3] Ribeiro Franco, P.I., Rodrigues, A.P., de Menezes, L.B. and Pacheco Miguel, M. (2020) Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract, 216, 152729. 

[4] Hinshaw, D.C. and Shevde, L.A. (2019) The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res, 79, 4557-4566.  

[5] Guo, S. and Deng, C.X. (2019) Effect of stromal cells in tumor microenvironment on metastasis initiation, 14, 2083-2093.

[6] Liu, Y. and Cao, X.. (2015) The origin and function of tumor-associated macrophages. Cell Mol Immunol, 12, 1-4. 

[7] Petty, A.J. and Yang, Y. (2017) Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy, 9, 289-302.

[8] Chen, Y., Song, Y., Du, W., Gong, L., Chang, H. and Zou, Z. (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci, 26, 78.  

[9] Rőszer, T. (2015) Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm, 2015, 816460. 

[10] Ding, D., Yao, Y., Yang, C. and Zhang, S. (2018) Identification of mannose receptor and CD163 as novel biomarkers for colorectal cancer. Cancer Biomark, 21, 689-700. 

[11] Rhee, I. (2016) Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res, 39, 1588-1596.  

[12] Farajzadeh Valilou, S., Keshavarz-Fathi, M., Silvestris, N., Argentiero, A. and Rezaei, N. (2018) The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev, 39, 46-61.  

[13] Edin, S., Wikberg, M.L., Dahlin, A.M., Rutegård, J., Öberg, Å., Oldenborg, P.A. and Palmqvist, R. (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One, 7, e47045. 

[14] Wang, X.L., Liu, K., Liu, J.H., Jiang, X.L., Qi, L.W., Xie, Y.F., et al. (2017) High infiltration of CD68-tumor associated macrophages, predict poor prognosis in Kazakh esophageal cancer patients. Int J Clin Exp Pathol, 10, 10282-10292. 

[15] Wang, X.L., Liu, K., Liu, J.H., Jiang, X.L., Qi, L.W., Xie, Y.F., et al. (2020) Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis. Int J Colorectal Dis, 35, 1203-1210.  

[16] Zhao, Y., Ge, X., Xu, X., Yu, S., Wang, J. and Sun, L. (2019) Prognostic value and clinicopathological roles of phenotypes of tumour-associated macrophages in colorectal cancer. J Cancer Res Clin Onco, 145, 3005-3019. 

[17] Li, S., Xu, F., Zhang, J., Wang, L., Zheng, Y., Wu, X., et al. (2017) Tumor-associated macrophages remodeling EMT and predicting survival in colorectal carcinoma. Oncoimmunology, 7, e1380765. 

[18] Kim, Y., Wen, X., Bae, J.M., Kim, J.H., Cho, N.Y. and Kang, G.H. (2018) The distribution of intratumoral macrophages correlates with molecular phenotypes and impacts prognosis in colorectal carcinoma. Histopathology, 73, 663-671. 

[19] Tamura, R., Tanaka, T., Yamamoto, Y., Akasaki, Y. and Sasaki, H. (2018) Dual role of macrophage in tumor immunity. Immunotherapy, 10, 899-909.  

[20] Tamura, R., Tanaka, T., Akasaki, Y., Murayama, Y., Yoshida, K. and Sasaki, H. (2019) The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol, 37, 2.  

[21] Vinnakota, K., Zhang, Y., Selvanesan, B.C., Topi, G., Salim, T., Sand-Dejmek, J., et al, A. (2017) M2-like macrophages induce colon cancer cell invasion via matrix metalloproteinases. J Cell Physiol, 232, 3468-3480.  

[22] Wei, C., Yang, C., Wang, S., Shi, D., Zhang, C., Lin, X., et al. (2019) Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer, 18, 64. 

[23] Vinnakota, K., Zhang, Y., Selvanesan, B.C., Topi, G., Salim, T., Sand-Dejmek, J., et al. (2017) M2-like macrophages induce colon cancer cell invasion via matrix metalloproteinases. J Cell Physiol, 232, 3468-3480.  

[24] GAO, S.Y., WU, J. and YANG, G.L. (2016) A study on correlation of tumor-associated macrophages infiltration,MMP-2 expression and angiogenesis in colon carcinoma. Chinese Journal of Immunology, 32, 336-339,344.

[25] Wang, F.Y., Kong, X.B., Yang, Y.Y., Pu, Z.C., Dou, X.X. and Meng, J.Y. (2020) The experimental study of M2 TAMs activating NK-κB pathway to promote the invasion and metastasis of colon cancer cells. Journal of Modern Oncology, 28, 3651-3656.

[26] Cai, J., Xia, L., Li, J., Ni, S., Song, H. and Wu, X.. (2019) Tumor-Associated Macrophages Derived TGF-β‒Induced Epithelial to Mesenchymal Transition in Colorectal Cancer Cells through Smad2,3-4/Snail Signaling Pathway. Cancer Res Treat, 51, 252-266. 

[27] Lan, J., Sun, L., Xu, F., Liu, L., Hu, F., Song, D., et al. (2019) M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Res, 79, 146-158. 

[28] Petty, A.J. and Yang, Y.. (2017) Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy. 2017 , 9, 289-302. 

[29] Ruffell, B., Chang-Strachan, D., Chan, V., Rosenbusch, A., Ho, C.M., Pryer, N., et al. (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 26, 623-37.   

[30] Li, X., Liu, R., Su, X., Pan, Y., Han, X., Shao, C., et al. (2019) Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer, 18, 177. 

[31] Giannone, G., Ghisoni, E., Genta, S., Scotto, G., Tuninetti, V., Turinetto, M., et al. (2020) Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy. Int J Mol Sci, 21, 4414. 

[32] Sawa-Wejksza, K. and Kandefer-Szerszeń, M. (2018) Tumor-Associated Macrophages as Target for Antitumor Therapy. Arch Immunol Ther Exp (Warsz), 66, 97-111.  

[33] Yahaya, M.A.F., Lila, M.A.M., Ismail, S., Zainol, M. and Afizan, N.A.R.N.M. (2019) Tumour-Associated Macrophages (TAMs) in Colon Cancer and How to Reeducate Them. J Immunol Res, 2019, 2368249. 

[34] Sanchez-Lopez, E., Flashner-Abramson, E., Shalapour, S., Zhong, Z., Taniguchi, K., Levitzki, A., et al. (2016) Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene, 35, 2634-44. 

[35] Lim, S.Y., Yuzhalin, A.E., Gordon-Weeks, A.N. and Muschel, R.J. (2016) Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget, 7, 28697-710. 

[36] Teng, K.Y., Han, J., Zhang, X., Hsu, S.H., He, S., Wani, N.A., et al. (2017) Blocking the CCL2-CCR2 Axis Using CCL2-Neutralizing Antibody Is an Effective Therapy for Hepatocellular Cancer in a Mouse Model. Mol Cancer Ther, 16, 312-322. 

[37] Li, X., Yao, W., Yuan, Y., Chen, P., Li, B., Li, J., et al. (2017) Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 66, 157-167. 

[38] Zhou, L., Jiang, Y., Liu, X., Li, L., Yang, X., Dong, C., et al. (2019) Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene, 38, 5792-5804.  

[39] Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. and Allavena, P. (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol, 14, 399-416. 

[40] Sandhu, S.K., Papadopoulos, K., Fong, P.C., Patnaik, A., Messiou, C., Olmos, D., et al. (2013) A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol, 71, 1041-50.

[41] Nywening, T.M., Wang-Gillam, A., Sanford, D.E., Belt, B.A., Panni, R.Z., Cusworth, B.M., et al. (2016) Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol, 17, 651-62. 

[42] Li, X., Bu, W., Meng, L., Liu, X., Wang, S., Jiang, L., et al. (2019) CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp Cell Res, 378, 131-138.  

[43] Bonapace, L., Coissieux, M.M., Wyckoff, J., Mertz, K.D., Varga, Z., Junt, T., et al. (2014) Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 515, 130-3. 

[44] Peyraud, F., Cousin, S. and Italiano, A. (2017) CSF-1R Inhibitor Development: Current Clinical Status. Curr Oncol Rep, 19, 70. 

[45] Ries, C.H., Cannarile, M.A., Hoves, S., Benz, J., Wartha, K., Runza, V., et al. (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 25, 846-59. 

[46] Erkes, D.A., Rosenbaum, S.R., Field, C.O., Chervoneva, I., Villanueva, J. and Aplin, A.E. (2020) PLX3397 inhibits the accumulation of intra-tumoral macrophages and improves bromodomain and extra-terminal inhibitor efficacy in melanoma. Pigment Cell Melanoma Res, 33, 372-377. 

[47] Chen, C., Yao, X., Xu, Y., Zhang, Q., Wang, H., Zhao, L., et al. (2019) Dahuang Zhechong Pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche. J Ethnopharmacol, 238, 111878.  

[48] Jiang, X., Cao, G., Gao, G., Wang, W., Zhao, J. and Gao, C. (2021) Triptolide decreases tumor-associated macrophages infiltration and M2 polarization to remodel colon cancer immune microenvironment via inhibiting tumor-derived CXCL12. J Cell Physiol, 236, 193-204. 

[49] Junankar, S., Shay, G., Jurczyluk, J., Ali, N., Down, J., Pocock, N., et al. (2015) Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov, 5, 35-42. 

[50] D'Incalci, M. and Zambelli. A. (2016) Trabectedin for the treatment of breast cancer. Expert Opin Investig Drugs, 25, 105-15.  

[51] Lum, H.D., Buhtoiarov, I.N., Schmidt, B.E., Berke, G., Paulnock, D.M., Sondel, P.M., et al. (2006) Tumoristatic effects of anti-CD40 mAb-activated macrophages involve nitric oxide and tumour necrosis factor-alpha. Immunology, 118, 261-70. 

[52] Beatty, G.L., Chiorean, E.G., Fishman, M.P., Saboury, B., Teitelbaum, U.R., Sun, W., et al. (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science, 331, 1612-6. 

[53] Stromnes, I.M., Burrack, A.L., Hulbert, A., Bonson, P., Black, C., Brockenbrough, J.S., et al. (2019) Differential Effects of Depleting versus Programming Tumor-Associated Macrophages on Engineered T Cells in Pancreatic Ductal Adenocarcinoma. Cancer Immunol Res, 7, 977-989.  

[54] Wiehagen, K.R., Girgis, N.M., Yamada, D.H., Smith, A.A., Chan, S.R., Grewal, I.S., et al. (2017) Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity. Cancer Immunol Res, 5, 1109-1121.  

[55] Ishihara, J., Ishihara, A., Potin, L., Hosseinchi, P., Fukunaga, K., Damo, M., et al. (2018) Improving Efficacy and Safety of Agonistic Anti-CD40 Antibody Through Extracellular Matrix Affinity. Mol Cancer Ther, 17, 2399-2411. 

[56] Logtenberg, M.E.W., Scheeren, F.A. and Schumacher, T.N. (2020) The CD47-SIRPα Immune Checkpoint. Immunity, 52, 742-752. 

[57] Willingham, S.B., Volkmer, J.P., Gentles, A.J., Sahoo, D., Dalerba, P., Mitra, S.S., et al. (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A, 109, 6662-7. 

[58] Zhang, M., Hutter, G., Kahn, S.A., Azad, T.D., Gholamin, S., Xu, C.Y., et al. (2016) Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo. PLoS One, 11, e0153550.

[59] Xiao. Z., Chung, H., Banan, B., Manning, P.T., Ott, K.C., Lin, S., et al. (2015) Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett, 360, 302-9.

[60] Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-like Receptors and the Control of Immunity. Cell, 180, 1044-1066.

[61] Liu, Z., Xie, Y., Xiong, Y., Liu, S., Qiu, C., Zhu, Z., et al. (2020) TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett, 469, 173-185.  

[62] Wang, D., Jiang, W., Zhu, F., Mao, X. and Agrawal, S. (2018) Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int J Oncol, 53, 1193-1203. 

[63] Huang, Z., Yang, Y., Jiang, Y., Shao, J., Sun, X., Chen, J., et al. (2013) Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials, 34, 746-55. 

[64] Mullins, S.R., Vasilakos, J.P., Deschler, K., Grigsby, I., Gillis, P., John, J., et al. (2019) Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer, 7, 244. 

[65] Sato-Kaneko, F., Yao, S., Ahmadi, A., Zhang, S.S., Hosoya, T., Kaneda, M.M., et al. (2017) Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight, 2, e93397.