Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2022, 4(11); doi: 10.25236/FMSR.2022.041108.

Research status of macrophage polarization and osteogenesis and vasculogenesis after polarization

Author(s)

Shangyi Lv1,2, Lisha Ma1,2, Huiyu He1,2

Corresponding Author:
Huiyu He
Affiliation(s)

1Department of Prosthodontics and Dental Implantology, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital), Urumqi, Xinjiang, 830054, China

2Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, Xinjiang, 830054, China

Abstract

Macrophages are one of the important innate immune cells in human body. Phenotypic variability and functional diversity are important characteristics of macrophages, which can be polarized under the induction and regulation of different microenvironmental signals. After polarization, macrophages further affect the local immune response, and cooperate with various cytokines in pathogen and microbial infection, tumor and immune regulation, tissue remodeling and regulation. Therefore, the polarization of macrophages and their role after polarization have become a new research hotspot.  

Keywords

Macrophages, Polarization, Osteogenesi, Angiogenesis

Cite This Paper

Shangyi Lv, Lisha Ma, Huiyu He. Research status of macrophage polarization and osteogenesis and vasculogenesis after polarization. Frontiers in Medical Science Research (2022) Vol. 4, Issue 11: 47-52. https://doi.org/10.25236/FMSR.2022.041108.

References

[1] Xuetao Cao. Medical Immunology [M]. 7th Ed. People's Medical Publishing House. 2018. 07

[2] Murray PJ. Macrophage polarization [J]. Annu Rev Physiol, 2017, 79: 541-566. 

[3] Van Ginderachter JA, Movahedi K, Hassanzadeh Ghas- sabeh G, et al, Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion [J]. Immunobiology, 2006, 211: 487-501. 

[4] Romo N, Magri G, MuntassellA, et al. Natural killer cellmediated response to human cytomegalovirus-infected macmphages is modulated by their functional polarization [J]. J Leukoc Biol, 2011, 90: 717-726. 

[5] Li H, Jiang T, Li MQ, et al. Transcriptional regulation of macrophages polarization by microRNAs [J]. Front Immunol, 2018, 9: 1175. 

[6] Jianmei Ma. Polarization phenotype and transcription factor regulation of macrophages [J]. Journal of Dalian Medical University, 2017. 39(1): 1-7. (In Chinese)

[7] LawrenceT, NatoliG. Transcriptional regulation of macrophage polarization: enabling diversity with identity [J]. Nat Rev Immunol. 2011. 11: 750-761. 

[8] Jiahui Pan, Gege Li, Qiuling Tang, et al. Effects of cyclodiguanylate on the polarization and proinflammation of M1 macrophages in vitro [J]. Journal of stomatology biomedicine, 2017, 8 (3): 122-126. 

[9] Qi Zhou, Donghua Yu, Shumin Liu. The mechanism of M1/M2 polarization of macrophages in different diseases [J]. Chinese Pharmacological Bulletin. 2020. Nov; 36 (11)

[10] Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathwayin human disease [J]. Cell, 2017, 170(4): 605-635. 

[11] Li H, Jiang T, Li MQ, et al. Transcriptional regulation of macrophages polarization by micro RNAs [J]. Front Immunol, 2018, 9: 1175. 

[12] Koh Y c, Yang G L, Lai c S, et al. Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases [J]. Int J Mol Sci, 2018, 19(8): 2208. 

[13] Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury [J]. J Cell Mol Med, 2017, 21(5): 941-954. 

[14] Byrne A J, Mathie SA, Gregory LG, et al. Pulmonary macro- phages:key players in the innate defence of the airways [J]. Thorax, 2015, 70(12) :1189- 1196. 

[15] Xiao L, Xiao Y. The autophagy in osteoimmonology: self- eating, maintenance, and beyond [J]. Front Endocrinol (Lausanne), 2019, 10: 490. 

[16] Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Rath B, Jager A, et al. Interactions of regenerative, inflammatory and biomechanical signals on bone morphogenetic protein-2 in periodontal ligament cells. J Periodontal Res. 2011;46: 374-81. 

[17] Tiessen C, Fehr M, Schwarz C, Baechler S, Domnanich K, Bottler U, et al. Modulation of the cellular redox status by the Alternaria toxins alternariol and alternariol monomethyl ether. Toxicology letters. 2013; 216: 23-30. 

[18] Hengartner NE, Fiedler J, Ignatius A, Brenner RE. IL-1beta inhibits human osteoblast migration. Mol Med. 2013;19:36-42. 

[19] Shuo Gao, Mengjie Cai, Fei Mao, et al. Effect of macrophages on the migration of bone marrow mesenchymal stem cells in mice under inflammatory environment [J]. Journal of jiangsu university (medical H), 2013, 23(3):201-206. 

[20] Nicolaidou V, Wong MM, Redpath AN, et al. Monocytes induce STAT3 асtivation in human mesenchymal stem cells to promote osteoblast formation [J]. PLoS One, 2012, 7(7): e39871. DOI: 10. 1371/journal, pone. 0039871. 

[21] Guihard P, Danger Y. Brounais B, et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes macrophages depends on oncostatin M signaling [J]. Stem Cells, 2012, 30(4): 762-772. DOI 10. 1002/stem. 1040. 

[22] Dong L, Wang CM. Harnessing the power of macrophages/ monocytes for enhanced bone tissue engineering [J]. Trends Biotechnol, 2013, 31(6): 342-346. 

[23] Omar OM, Granéli c, Ekström K, et al. The stimulation of an osteogenic response by classical monocyte activation [J]. Bioma-teri- als, 2011, 32(32): 8190-8204. 

[24] Lu LY, Loi F, Nathan K, et al. Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2- prostaglandin E2 pathway [J]. J Orthop Res, 2017, 35(11):2378 2385. 

[25] Zhang Y, Böse T, Unger RE. Macrophage type modulates osteog- enic differentiation of adipose tissue MSCs [J]. Cell Tissue Res, 2017, 35(11):2378-2385. 

[26] Loi F, Cordova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro [J]. Stem Cell Res Ther, 2016, 7:15. DOI:10. 1186/s13287-016-0276-5. 

[27] He XT, Li X, Yin Y, et al. The effects of conditioned media gen-erated by polarized macrophages on the cellularbehaviours of bonemarrow mesenchymal stem cells [J]. J Cell Mol Med, 2018, 22(2):1302-1315. 

[28] Hao NB, LU MH, Fan YH, et a1. Macrophages in tumormicroenvironments and the progression of tumors [J] OLl. ClinDev Immun01, 2012, 2014: 94809812012-01-19, 1. http://www. hindawi. com/ journals/jir/ 2012/ 948098/

[29] Leitinger N, Schulman IG. Phenotypic polarization of macrophages in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2013, 33(6): 1120‑1126. DOI:10. 1161/JAHA. 116. 004756. 

[30] Jetten N, Verbruggen S, Gijbels MJ, et al. Anti‑inflammatory M2, but not pro‑inflammatory M1 macrophages promote angiogenesis in vivo [J]. Angiogenesis, 2014, 17(1): 109‑118. DOI: 10. 1007/ s10456-013-9381-6. 

[31] Spiller KL, Anfang RR, Spiller KJ, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds [J]. Biomaterials, 2014, 35 (15):4477-4488. 

[32] Apte RS, Richter J, Herndon J, et al. Macrophages inhibit neovascularization in a murine model of age-related macular degeneration [J/OL]. PLoS Med, 2006, 3(8): 310[2006-08-03]. http://dx. plos. org/ 10. 1371/journal. pmed. 0030310. DOI:10. 1371/ journal. pmed. 0030310. 

[33] BRANCATO S K, ALBINAJ E. Wound macrophages as key regulators of repair:origin, phenotype, and function [J]. Am J Pathol, 2011, 178(1): 19-25. 

[34] TAKEDA Y, COSTA S, DELAMARRE E, et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis [J]. Nature, 2011, 479(7371): 122-126. 

[35] Kodelja, V. ; Muller, C. ; Tenorio, S. ; Schebesch, C. ; Orfanos, C. E. ; Goerdt, S. Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology 1997, 197, 478-493, doi:10. 1016/s0171-2985(97)80080-0. 

[36] Hellberg, C. Ostman, A. ; Heldin, C. H. PDGF and vessel maturation. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer 2010, 180, 103-114, doi:10. 1007/978-3-540-78281-0-7. 

[37] Stratman, A. N. ; Schwindt, A. E. ; Malotte, K. M. ; Davis, G. E, Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 2010, 116, 4720-4730, doi:10. 1182/blood-2010-05-286872. 

[38] Ma J, Mehta M, Lam G, et a1. Influence of subretinal fluid in advanced stage retinopathy of prematurity on proangiogenic response and cell proliferation [J]. MoI Vis, 2014. 20: 881—893. 

[39] WU A C, RAGGATT L J, ALEXANDER K A, et al. Unraveling macrophage contributions to bone repair [J]. Bonekey Rep, 2013, 2: 373.