Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2022, 4(13); doi: 10.25236/FMSR.2022.041304.

Progress on the Role of MicroRNAs and GSK3 β in the Regulation of Inflammatory Signal Pathway in Ischemic Stroke

Author(s)

Qiang Duan1, Silan Fan1, Qian Wang2, Chao Li3, Xiaoqun Huang1, Jie Huang1, Chunxia Wei1, Bo Wang1

Corresponding Author:
Jie Huang
Affiliation(s)

1Department of Rehabilitation Medicine, The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, China

2Department of Lucheng District Street Community Health Service Center, Yichang Hospital of Traditional Chinese Medicine, Yichang, China

3Department of Neurology, The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, China

Abstract

The inflammatory response is the core content of pathophysiology after cerebral ischemia reperfusion injury (cerebral ischemia reperfusion injury, IRI), involving the inflammatory cells activated by different pathways and immunity response. More and more studies have shown that MicroRNAs (miRNAs) play an important role in the regulation of inflammation after IRI, while glycogen synthase kinase-3 β (GSK-3β), as one of the most important kinases, is also involved in the regulation of inflammatory response, autophagy, apoptosis and other pathological processes of IRI. This article reviews the related studies on the inflammatory response pathway regulated by miRNA and GSK-3 β in IRI, in order to provide a new strategy for the prevention and treatment of IRI.

Keywords

ischemic stroke, miRNAs, GSK-3β, neuro-inflammation

Cite This Paper

Qiang Duan, Silan Fan, Qian Wang, Chao Li, Xiaoqun Huang, Jie Huang, Chunxia Wei, Bo Wang. Progress on the Role of MicroRNAs and GSK3 β in the Regulation of Inflammatory Signal Pathway in Ischemic Stroke. Frontiers in Medical Science Research (2022) Vol. 4, Issue 13: 19-23. https://doi.org/10.25236/FMSR.2022.041304.

References

[1] Wang L D, Liu J M, Yang G, et al. The prevention and treatment of stroke still face huge challenges—brief report on stroke prevention and treatment in China, 2018 [J]. Chin Circul, 2019, 34(2): 105-19.

[2] Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. CIRCULATION 2017, 135(10): e146-e603.

[3] Altermann C, Souza MA, Schimidt HL, Izaguirry AP, Martins A, Garcia A, Santos FW, Mello-Carpes PB. Short-term green tea supplementation prevents recognition memory deficits and ameliorates hippocampal oxidative stress induced by different stroke models in rats. BRAIN RES BULL 2017, 131: 78-84.

[4] Yemisci M, Caban S, Gursoy-Ozdemir Y, Lule S, Novoa-Carballal R, Riguera R, Fernandez-Megia E, Andrieux K, Couvreur P, Capan Y, Dalkara T. Systemically administered brain-targeted nanoparticles transport peptides across  the blood-brain barrier and provide neuroprotection. J Cereb Blood Flow Metab 2015, 35(3): 469-475.

[5] Wang P, Liang X, Lu Y, Zhao X, Liang J. MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. NEUROCHEM RES 2016, 41(10): 2627-2635.

[6] Li P, Fan JB, Gao Y, Zhang M, Zhang L, Yang N, Zhao X. miR-135b-5p inhibits LPS-induced TNFalpha production via silencing AMPK phosphatase Ppm1e. Oncotarget 2016, 7(47): 77978-77986.

[7] Seira O, Del RJ. Glycogen synthase kinase 3 beta (GSK3beta) at the tip of neuronal development and regeneration. MOL NEUROBIOL 2014, 49(2): 931-944.

[8] Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation:  Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 2018, 139: 124-136.

[9] Banerjee R, Rudloff Z, Naylor C, Yu MC, Gunawardena S. The presenilin loop region is essential for glycogen synthase kinase 3 beta (GSK3beta) mediated functions on motor proteins during axonal transport. HUM MOL GENET 2018, 27(17): 2986-3001.

[10] Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. NAT REV IMMUNOL 2014, 14(8): 546-558.

[11] Parpaleix A, Amsellem V, Houssaini A, Abid S, Breau M, Marcos E, Sawaki D, Delcroix M, Quarck R, Maillard A, Couillin I, Ryffel B, Adnot S. Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension. EUR RESPIR J 2016, 48(2): 470-483.

[12] Xu X, Wen Z, Zhao N, Xu X, Wang F, Gao J, Jiang Y, Liu X. MicroRNA-1906, a Novel Regulator of Toll-Like Receptor 4, Ameliorates Ischemic Injury after Experimental Stroke in Mice. J NEUROSCI 2017, 37(43): 10498-10515.

[13] Yang Y, Zhang N, Wang S, Wen Y. MicroRNA-155 Regulates Inflammatory Response in Ischemic Cerebral Tissues through Autophagy. CURR NEUROVASC RES 2018, 15(2): 103-110.

[14] Chen S, Yin W, Bi K, Lu B. MicroRNA497 attenuates cerebral infarction in patients via the TLR4 and CREB signaling pathways. INT J MOL MED 2018, 42(1): 547-556.

[15] Wang H, Brown J, Martin M. Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. CYTOKINE 2011, 53(2): 130-140.

[16] Ko R, Lee SY. Glycogen synthase kinase 3beta in Toll-like receptor signaling. BMB REP 2016, 49(6): 305-310.

[17] Perales-Linares R, Navas-Martin S. Toll-like receptor 3 in viral pathogenesis: friend or foe? IMMUNOLOGY 2013, 140(2): 153-167.

[18] Zhu H, Zou L, Tian J, Du G, Gao Y. SMND-309, a novel derivative of salvianolic acid B, protects rat brains ischemia  and reperfusion injury by targeting the JAK2/STAT3 pathway. EUR J PHARMACOL 2013, 714(1-3): 23-31.

[19] Hu GQ, Du X, Li YJ, Gao XQ, Chen BQ, Yu L. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway. NEURAL REGEN RES 2017, 12(1): 96-102.

[20] Tian YS, Zhong D, Liu QQ, Zhao XL, Sun HX, Jin J, Wang HN, Li GZ. Upregulation of miR-216a exerts neuroprotective effects against ischemic injury through negatively regulating JAK2/STAT3-involved apoptosis and inflammatory pathways. J NEUROSURG 2018, 130(3): 977-988.

[21] Ren C, Li S, Wang B, Han R, Li N, Gao J, Li X, Jin K, Ji X. Limb remote ischemic conditioning increases Notch signaling activity and promotes arteriogenesis in the ischemic rat brain. BEHAV BRAIN RES 2018, 340: 87-93.

[22] Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST, Ling EA. Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. GLIA 2008, 56(11): 1224-1237.

[23] Shi F, Dong Z, Li H, Liu X, Liu H, Dong R. MicroRNA-137 protects neurons against ischemia/reperfusion injury through regulation of the Notch signaling pathway. EXP CELL RES 2017, 352(1): 1-8.

[24] Bernard NJ. Mitochondria control pyroptosis. NAT IMMUNOL 2021, 22(9): 1071.

[25] Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? CELL MOL LIFE SCI 2014, 71(20): 3969-3985.

[26] Grinberg-Bleyer Y, Ghosh S. A Novel Link between Inflammation and Cancer. CANCER CELL 2016, 30(6): 829-830.

[27] Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor kappaB and Mitogen-Activated Protein Kinase Pathways. FRONT IMMUNOL 2018, 9: 1849.

[28] Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W, Braun-Dullaeus RC. GSK-3beta controls NF-kappaB activity via IKKgamma/NEMO. Sci Rep 2016, 6: 38553.

[29] Zhang JS, Herreros-Villanueva M, Koenig A, Deng Z, de Narvajas AA, Gomez TS, Meng X, Bujanda L, Ellenrieder V, Li XK, Kaufmann SH, Billadeau DD. Differential activity of GSK-3 isoforms regulates NF-kappaB and TRAIL- or TNFalpha induced apoptosis in pancreatic cancer cells. CELL DEATH DIS 2014, 5: e1142.

[30] Duan J, Cui J, Yang Z, Guo C, Cao J, Xi M, Weng Y, Yin Y, Wang Y, Wei G, Qiao B, Wen A. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3beta/Nrf2 signaling. J Neuroinflammation 2019, 16(1): 24.

[31] Ramagiri S, Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3beta/CREB/ BDNF pathway. EUR J PHARMACOL 2017, 803: 84-93.

[32] D'Angelo B, Ek CJ, Sun Y, Zhu C, Sandberg M, Mallard C. GSK3beta inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling. NEUROPHARMACOLOGY 2016, 101: 13-23.