Welcome to Francis Academic Press

International Journal of Frontiers in Engineering Technology, 2022, 4(10); doi: 10.25236/IJFET.2022.041009.

Analysis of gas turbine inlet cooling system based on double-effect lithium bromide absorption chiller

Author(s)

Zhaojie Geng

Corresponding Author:
Zhaojie Geng
Affiliation(s)

Faculty of Mechatronik, Hochschule Kaiserslautern, Kaiserslautern, 67655, Germany

Abstract

The study analyzes the theoretical gain of the gas turbine inlet cooling system using a single absorption double-effect lithium bromide chiller based on real climatic data and gas turbine technical parameters, and through rational logical analysis and calculations, using the annual fuel savings ΣB as the criteria. The calculation uses the technical parameters of UGT 10000 (NISO =10.5 MW) to derive the optimal design value and the corresponding gain of the intake air cooling system. The results show a fuel saving of 26,359.2 g per 1 kW power output of the unit in year-round operation, for a total annual fuel saving of 354.6 t.

Keywords

gas turbine air cooling system; cooling load; cooling capacity; annual fuel reduction

Cite This Paper

Zhaojie Geng. Analysis of gas turbine inlet cooling system based on double-effect lithium bromide absorption chiller. International Journal of Frontiers in Engineering Technology (2022), Vol. 4, Issue 10: 51-55. https://doi.org/10.25236/IJFET.2022.041009.

References

[1] Farouk, N., Sheng, L., & Hayat, Q. (2013). Effect of ambient temperature on the performance of gas turbines power plant. International Journal of Computer Science Issues (IJCSI), 10(1): 439.

[2] Zhang, T., Liu, Z., Hao, H., & Chang, L. (2014). Application research of intake-air cooling technologies in gas-steam combined cycle power plants in China. J. Power Energy Eng, 2: 304-311. 

[3] Dizaji, H. S., Hu, E. J., Chen, L., & Pourhedayat, S. (2019). Using novel integrated Maisotsenko cooler and absorption chiller for cooling of gas turbine inlet air. Energy Conversion and Management, 195: 1067-1078. 

[4] Radchenko, A., Trushliakov, E., Kosowski, K., Mikielewicz, D., & Radchenko, M. (2020). Innovative turbine intake air cooling systems and their rational designing. Energies, 13(23): 6201. 

[5] Popli, S., Rodgers, P., & Eveloy, V. (2013). Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Applied thermal engineering, 50(1), 918-931. 

[6] Coskun, C., Demiral, D., Ertürk, M., & Oktay, Z. (2012). Modified degree-hour calculation method. Solar Power, 57-62.

[7] Chaker, M., Meher-Homji, C. B., Mee III, T., & Nicholson, A. (2003). Inlet fogging of gas turbine engines detailed climatic analysis of gas turbine evaporation cooling potential in the USA. J. Eng. Gas Turbines Power, 125(1): 300-309.

[8] Radchenko, A., Bohdal, L., Zongming, Y., Portnoi, B., & Tkachenko, V. (2019, September). Rational designing of gas turbine inlet air cooling system. In: Grabchenko’s International Conference on Advanced Manufacturing Processes. Odessa. pp. 591-599.

[9] Canova, A., Cavallero, C., Freschi, F., Giaccone, L., Repetto, M., & Tartaglia, M. (2009). Optimal energy management. IEEE Industry Applications Magazine, 15(2): 62-65.

[10] Forsyth, J.L. (2013) Gas turbine inlet air chilling for LNG. In: Proceedings of the IGT International Liquefied Natural Gas Conference. Houston. pp. 1763–1778.