Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2022, 4(15); doi: 10.25236/FMSR.2022.041502.

From Symptom Relief to Disease Treatment: A Review of Stem Cell Therapy Development for Parkinson’s Disease

Author(s)

Hanbo Dong

Corresponding Author:
Hanbo Dong
Affiliation(s)

Biochemical Engineering Department, University College London, London, UK

Abstract

In the past, the treatments of some diseases only focused on the relief of the symptoms due to technological limitations. Take Parkinson's Disease (PD) for example, it is caused by the damage of specific neuron cells resulting in the loss of striatal dopamine. The traditional treatments were the direct replenishment of the missing substance by exogenous drugs or identical substances. This clearly does not stop the progression of the disease, as the loss of specific cells cannot be regenerated. In this case, the discovery of stem cells with potency of regeneration and differentiation have provided a new way to cure the damage of specific cells. The feasibility of differentiating stem cells into specific cells as a therapy has been demonstrated by many studies and significant progress has been made. This paper reviews the development of therapies for PD from levodopa to stem cell therapy over the last decades and discusses the currently known risks for stem cell therapy with potential solutions.

Keywords

Parkinson’s Disease, Treatment Evolution, Stem Cell, Stem Cell Therapy, Pluripotent Stem Cell

Cite This Paper

Hanbo Dong. From Symptom Relief to Disease Treatment: A Review of Stem Cell Therapy Development for Parkinson’s Disease. Frontiers in Medical Science Research (2022) Vol. 4, Issue 15: 7-13. https://doi.org/10.25236/FMSR.2022.041502.

References

[1] Tolosa, E., Wenning, G., & Poewe, W. (2006). The diagnosis of Parkinson's disease. The Lancet Neurology, 5, 75-86.

[2] Feigin, V.L., Nichols, E., Alam, T., Bannick, M.S., Beghi, E., Blake, N., ... & Fischer, F. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18, 459-480.

[3] Bloem, B.R., Okun, M.S., & Klein, C. (2021). Parkinson's disease. The Lancet, 397, 2284-2303.

[4] Dauer, W., & Przedborski, S. (2003). Parkinson’s Disease: Mechanisms and Models. Neuron, 39, 889–909. 

[5] De Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson's disease. The Lancet Neurology, 5, 525-535.

[6] Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Parkinson’s disease. Lancet Neurology, 20, 385–397. 

[7] Kalia, L. V., & Lang, A. E. (2015). Parkinson's disease. Lancet, 386, 896-912.

[8] Kim, S. U., & De Vellis, J. (2009). Stem cell‐based cell therapy in neurological diseases: a review. Journal of neuroscience research, 87, 2183-2200.

[9] Biehl, J. K., & Russell, B. (2009). Introduction to stem cell therapy. The Journal of cardiovascular nursing, 24, 98.

[10] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 131(5), 861-872.

[11] Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy—promise and challenges. Cell stem cell, 27, 523-531.

[12] Stoker, T. B., & Barker, R. A. (2020). Recent developments in the treatment of Parkinson's Disease. F1000Research, 9. 862

[13] Pradhan, A. U., Uwishema, O., Onyeaka, H., Adanur, I., & Dost, B. (2022). A review of stem cell therapy: an emerging treatment for dementia in alzheimer's and Parkinson's disease. Brain and behavior, 12, 2740.

[14] Lee, T. K., & Yankee, E. L. (2021). A review on Parkinson’s disease treatment. Neuroimmunology and Neuroinflammation, 8, 222.

[15] Koller, W. C., & Rueda, M. G. (1998). Mechanism of action of dopaminergic agents in Parkinson’s disease. Neurology, 50, 11–14. 

[16] Armstrong, M. J., & Okun, M. S. (2020). Diagnosis and Treatment of Parkinson Disease: A Review. JAMA : the Journal of the American Medical Association, 323, 548–560. 

[17] Korczyn, A. (2004). Drug treatment of Parkinson’s disease. Dialogues in Clinical Neuroscience, 6, 315–322. 

[18] Boronat-García, A., Guerra-Crespo, M., & Drucker-Colín, R. (2017). Historical perspective of cell transplantation in Parkinson’s disease. World Journal of Transplantation, 7(3), 179–192. 

[19] Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavii, B., Frackowiak, R. & Björklund, M. (1990). Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science, 247, 574-577.

[20] Brundin, P., Pogarell, O., Hagell, P., Piccini, P., Widner, H., Schrag, A., Kupsch, A., Crabb, L., Odin, P., Gustavii, B., Björklund, A., Brooks, D. J., David Marsden, C., Oertel, W. H., Quinn, N. P., Rehncrona, S., & Lindvall, O. (2000). Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain (London, England : 1878), 123(7), 1380–1390. 

[21] Lindvall, Sawle, G., Widner, H., Rothwell, J. C., Björklund, A., Brooks, D., Brundin, P., Frackowiak, R., Marsden, C. D., Odin, P., & Rehncrona, S. (1994). Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Annals of Neurology, 35(2), 172–180. https://doi.org/10.1002/ana.410350208

[22] Wenning, G. K., Odin, P., Morrish, P., Rehncrona, S., Widner, H., Brundin, P., ... & Lindvall, O. (1997). Short‐and long‐term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 42, 95-107.

[23] Piccini, P., Brooks, D. J., Björklund, A., Gunn, R. N., Grasby, P. M., Rimoldi, O., Brundin, P., Hagell, P., Rehncrona, S., Widner, H., & Lindvall, O. (1999). Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nature Neuroscience, 2, 1137–1140. 

[24] Barker, R. A., Drouin-Ouellet, J., & Parmar, M. (2015). Cell-based therapies for Parkinson disease—past insights and future potential. Nature Reviews. Neurology, 11, 492–503. 

[25] Kefalopoulou, Z., Politis, M., Piccini, P., Mencacci, N., Bhatia, K., Jahanshahi, M., Widner, H., Rehncrona, S., Brundin, P., Björklund, A., Lindvall, O., Limousin, P., Quinn, N., & Foltynie, T. (2014). Long-term Clinical Outcome of Fetal Cell Transplantation for Parkinson Disease: Two Case Reports. JAMA Neurology, 71, 83–87. 

[26] Stoker, T. B., Blair, N. F., & Barker, R. A. (2017). Neural grafting for Parkinson’s disease: challenges and prospects. Neural Regeneration Research, 12(3), 389–392. 

[27] Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W.-Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J. Q., Eidelberg, D., & Fahn, S. (2001). Transplantation of Embryonic Dopamine Neurons for Severe Parkinson’s Disease. The New England Journal of Medicine, 344, 710–719. https://doi.org/10.1056/NEJM200103083441002

[28] Olanow, C. G., Goetz, C. G., Kordower, J. H., Stoessl, A. J., Sossi, V., Brin, M. F., Shannon, K. M., Nauert, G. M., Perl, D. P., Godbold, J., & Freeman, T. B. (2003). A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Annals of Neurology, 54, 403–414. 

[29] Björklund, A., Dunnett, S. B., Brundin, P., Stoessl, A. J., Freed, C. R., Breeze, R. E., Levivier, M., Peschanski, M., Studer, L., & Barker, R. (2003). Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurology, 2, 437–445. 

[30] Perrier, A. L., Tabar, V., Barberi, T., Rubio, M. E., Bruses, J., Topf, N., Harrison, N. L., & Studer, L. (2004). Derivation of Midbrain Dopamine Neurons from Human Embryonic Stem Cells. Proceedings of the National Academy of Sciences - PNAS, 101, 12543–12548. 

[31] Ben‐Hur, T., Idelson, M., Khaner, H., Pera, M., Reinhartz, E., Itzik, A., & Reubinoff, B. E. (2004). Transplantation of human embryonic stem cell–derived neural progenitors improves behavioral deficit in parkinsonian rats. Stem cells, 22, 1246-1255.

[32] Muramatsu, S., Okuno, T., Suzuki, Y., Nakayama, T., Kakiuchi, T., Takino, N., Iida, A., Ono, F., Terao, K., Inoue, N., Nakano, I., Kondo, Y., & Tsukada, H. (2009). Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson’s disease. Synapse (New York, N.Y.), 63, 541–548. 

[33] Rath, A., Klein, A., Papazoglou, A., Pruszak, J., Garcia, J., Krause, M., Maciaczyk, J., Dunnett, S. B., & Nikkhah, G. (2013). Survival and Functional Restoration of Human Fetal Ventral Mesencephalon following Transplantation in a Rat Model of Parkinson’s Disease. Cell Transplantation, 22, 1281–1293. 

[34] Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., Van Camp, N., Perrier, A. L., Hantraye, P., Björklund, A., & Parmar, M. (2014). Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinson’s Disease. Cell Stem Cell, 15, 653–665. 

[35] Emborg, M. E., Liu, Y., Xi, J., Zhang, X., Yin, Y., Lu, J., Joers, V., Swanson, C., Holden, J. E., & Zhang, S.-C. (2013). Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain. Cell Reports (Cambridge), 3, 646–650. 

[36] Hallett, P. J., Deleidi, M., Astradsson, A., Smith, G. A., Cooper, O., Osborn, T. M., Sundberg, M., Moore, M. A., Perez-Torres, E., Brownell, A.-L., Schumacher, J. M., Spealman, R. D., & Isacson, O. (2015). Successful Function of Autologous iPSC-Derived Dopamine Neurons following Transplantation in a Non-Human Primate Model of Parkinson’s Disease. Cell Stem Cell, 16, 269–274. 

[37] Schweitzer, J. S., Song, B., Herrington, T. M., Park, T.-Y., Lee, N., Ko, S., Jeon, J., Cha, Y., Kim, K., Li, Q., Henchcliffe, C., Kaplitt, M., Neff, C., Rapalino, O., Seo, H., Lee, I.-H., Kim, J., Kim, T., Petsko, G. A., … Kim, K.-S. (2020). Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson’s Disease. The New England Journal of Medicine, 382, 1926–1932. 

[38] Inoue, R., Nishiyama, K., Li, J., Miyashita, D., Ono, M., Terauchi, Y., & Shirakawa, J. (2021). The feasibility and applicability of stem cell therapy for the cure of type 1 diabetes. Cells (Basel, Switzerland), 10, 1589.

[39] de Almeida, P. E., Ransohoff, J. D., Nahid, A., & Wu, J. C. (2013). Immunogenicity of pluripotent stem cells and their derivatives. Circulation research, 112, 549-561.

[40] Bradley, J.A., Bolton, E.M. & Pedersen, R.A., 2002. Stem cell medicine encounters the immune system. Nature reviews. Immunology, 2, 859–871.

[41] Auchincloss, H. & Bonventre, J.V., 2002. Transplanting cloned cells into therapeutic promise. Nature biotechnology, 20, 665–666.

[42] Guha, P., Morgan, J. W., Mostoslavsky, G., Rodrigues, N. P., & Boyd, A. S. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell stem cell, 12, 407-412.

[43] Liu, X., Li, W., Fu, X., & Xu, Y. (2017). The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Frontiers in Immunology, 8, 645.

[44] Kawamura, T., Miyagawa, S., Fukushima, S., Maeda, A., Kashiyama, N., Kawamura, A., ... & Sawa, Y. (2016). Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem cell reports, 6, 312-320.

[45] Fishman, J.A., 2013. Overview: Cytomegalovirus and the Herpesviruses in Transplantation. American journal of transplantation, 13, 1–8.

[46] Lanza, R., Russell, D.W. & Nagy, A., 2019. Engineering universal cells that evade immune detection. Nature reviews. Immunology, 19, 723–733.

[47] Nauta, A.J. & Fibbe, W.E., 2007. Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.

[48] Srivastava, A. K., Bulte, C. A., Shats, I., Walczak, P., & Bulte, J. W. (2016). Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. Experimental neurology, 275, 154-161.

[49] Yoshida, S., Miyagawa, S., Toyofuku, T., Fukushima, S., Kawamura, T., Kawamura, A., ... & Sawa, Y. (2020). Syngeneic mesenchymal stem cells reduce immune rejection after induced pluripotent stem cell-derived allogeneic cardiomyocyte transplantation. Scientific reports, 10, 1-11.

[50] Baker, D. E., Harrison, N. J., Maltby, E., Smith, K., Moore, H. D., Shaw, P. J., ... & Andrews, P. W. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nature biotechnology, 25, 207-215

[51] Liu, C. C., Ma, D. L., Yan, T. D., Fan, X., Poon, Z., Poon, L. F., ... & Li, S. (2016). Distinct responses of stem cells to telomere uncapping—a potential strategy to improve the safety of cell therapy. Stem cells, 34, 2471-2484.

[52] Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L., & Wu, J. C. (2013). Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature medicine, 19, 998-1004.

[53] Anyfantis, G., Baharvand, H., Baker, J., Baker, D., Munoz, M. B., Beil, S., Benvenisty, N., Ben-Yosef, D., Biancotti, J.-C., Brena, R. M., Brison, D., Caisander, G., Camarasa, M. V., Chen, J., Choi, Y. M., Choo, A. B. H., Colman, A., Crook, J. M., Daley, G. Q., … Downie, J. (2011). Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 29, 1132–1144.

[54] Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J. C., Yakir, B., Clark, A. T., ... & Benvenisty, N. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell stem cell, 7, 521-531.

[55] Iida, T., Iwanami, A., Sanosaka, T., Kohyama, J., Miyoshi, H., Nagoshi, N., ... & Okano, H. (2017). Whole-genome DNA methylation analyses revealed epigenetic instability in tumorigenic human iPS cell-derived neural stem/progenitor cells. Stem cells, 35, 1316-1327.

[56] Nori, S., Okada, Y., Nishimura, S., Sasaki, T., Itakura, G., Kobayashi, Y., ... & Okano, H. (2015). Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem cell reports, 4, 360-373.

[57] Deng, Zhang, Y., Xie, Y., Zhang, L., & Tang, P. (2018). Cell Transplantation for Spinal Cord Injury: Tumorigenicity of Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cells. Stem Cells International, 2018:5653787. 

[58] Fukuda, H., Takahashi, J., Watanabe, K., Hayashi, H., Morizane, A., Koyanagi, M., ... & Hashimoto, N. (2006). Fluorescence-activated cell sorting–based purification of embryonic stem cell–derived neural precursors averts tumor formation after transplantation. Stem cells, 24, 763-771.

[59] Li, Z., Wilson, K. D., Smith, B., Kraft, D. L., Jia, F., Huang, M., ... & Wu, J. C. (2009). Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PloS one, 4, e8443.

[60] Borchin, B., Chen, J. & Barberi, T., 2013. Derivation and FACS-Mediated Purification of PAX3 /PAX7 Skeletal Muscle Precursors from Human Pluripotent Stem Cells. Stem cell reports, 1, 620–631.

[61] Bonner, W. A., Hulett, H. R., Sweet, R. G., & Herzenberg, L. A. (1972). Fluorescence activated cell sorting. Review of Scientific Instruments, 43, 404-409.

[62] Feng, J., Funk, W.D., Wang, S.S., Weinrich, S L., Avilion, A.A., Chiu, C.P., ... & Villeponteau, B. (1995). The RNA component of human telomerase. Science, 269, 1236-1241.

[63] Nakamura, T.M., Morin, G.B., Chapman, K.B., Weinrich, S.L., Andrews, W.H., Lingner, J., ... & Cech, T.R. (1997). Telomerase catalytic subunit homologs from fission yeast and human. Science, 277, 955-959.

[64] Harley, C.B., Futcher, A.B. & Greider, C.W., 1990. Telomeres shorten during ageing of human fibroblasts. Nature (London), 345, 458–460.

[65] Levy, M.Z., Allsopp, R.C., Futcher, A.B., Greider, C.W., & Harley, C.B. (1992). Telomere end-replication problem and cell aging. Journal of molecular biology, 225, 951-960.

[66] Takai, H., Smogorzewska, A. & de Lange, T., 2003. DNA Damage Foci at Dysfunctional Telomeres. Current biology, 13, 1549–1556.

[67] Filion, T.M., Qiao, M., Ghule, P.N., Mandeville, M., Van Wijnen, A.J., Stein, J.L., ... & Stein, G.S. (2009). Survival responses of human embryonic stem cells to DNA damage. Journal of cellular physiology, 220, 586-592.