Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2023, 5(2); doi: 10.25236/FMSR.2023.050207.

Research Progress on Mechanism and Application of Zinc in Osteogenesis

Author(s)

Dongyao Li1, Shuai Zhao1, Guoqiang Xu1,2

Corresponding Author:
Dongyao Li
Affiliation(s)

1Department of Prosthodontic Implantology, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital), Urumqi, Xinjiang Uygur Autonomous Region, 830054, China

2Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, Xinjiang Uygur Autonomous Region, 830054, China

Abstract

As the second most abundant trace metal element in the human body, zinc plays an important role in bone homeostasis and bone disease treatment. Adequate amounts of zinc not only mediates osteogenesis-related pathways through zinc dependent enzymes and zinc finger proteins to induce the differentiation of mesenchymal stem cells into osteoblasts and promote osteogenesis, but also inhibits osteoclast resorption activity, reducing bone resorption and thus promoting osteogenesis. In recent years, the importance of zinc in bone development, regeneration and homeostasis has been gradually discovered. The mechanism and application of zinc's osteogenic effect have been extensively studied. The aim of this paper is to summarize the research on zinc osteogenic mechanism and review its application research in bone tissue engineering in recent years.

Keywords

zinc, osteogenic effect, osteoblasts, bone tissue engineering

Cite This Paper

Dongyao Li, Shuai Zhao, Guoqiang Xu. Research Progress on Mechanism and Application of Zinc in Osteogenesis. Frontiers in Medical Science Research (2023) Vol. 5, Issue 2: 43-49. https://doi.org/10.25236/FMSR.2023.050207.

References

[1] Hu Yan, Han Guangyu, Wang Jian. Preliminary Study on Trace Element Zinc and Human Health [J]. Contemporary Medicine, 2011, 17 (31): 152-153.

[2] Shen Xinkun, Hu Yan, Xu Gaoqiang, Chen Weizhen, Xu Kui, Ran Qichun, Ma Pingping, Zhang Yarong, Li Jinghua, Cai Kaiyong. Regulation of the functions incorporated into biological and bone coating by Zn-micough. [J]. ACS titanium materials & interfaces, 2014, 6 (18).

[3] Zhang Ying, Liu Shufang. Trace element zinc and human health [J]. Science and Technology Information, 2019, 17 (05): 253-254.

[4] Zhao, B.; van der Mei, H. C.; Subbiahdoss, G.; de Vries, J.; Rustema-Abbing, M.; Kuijer, R.; Busscher, H. J.; Ren, Y. Soft Tissue Versus Biofilm Formation on Early Integration Dental Implant Materials. Dent. Mater. 2014, 30, 716 − 727.

[5] Yuan, K.; Chan, Y. J.; Kung, K. C.; Lee, T. M. Comparison of Osseointegration on Various Implant Surfaces after Bacterial Contamination and Cleaning Faces: A Rabbit Study. Int. J. Oral Maxillofac. Implants 2014, 29, 32 − 40.

[6] Lai, M.; Cai, K.; Zhao, L.; Chen, X.; Hou, Y.; Yang, Z. Surface Funtionalization of TiO2 Nanotubes with Bone Morphogenetic Protein 2 and Synergistic Effect on the Differentiation of Mesenchymal Stem Cells. Biomacromolecules 2011, 12, 1097 − 1105.

[7] Yada, M.; Inoue, Y.; Sakamoto, A.; Torikai, T.; Watari, T. Synthesis and Controllable Wettability of Micro- and Nanostructured Titanium Phosphate Thin Films Formed on Titanium Plates. ACS Appl. Mater. Interfaces 2014, 6, 7695 − 7704.

[8] Guo H, Xia D, Zheng Y, Zhu Y, Liu Y, Zhou Y. A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration studies: In vitro and in vivo. Acta Biomater. 2020 Apr 1; 106:396-409.

[9] Jin G, Cao H, Qiao Y, Meng F, Zhu H, Liu X. Osteogenic activity and antibacterial effect of zinc ion titanium implanted. Colloids Surf B Biointerfaces. 2014 May 1; 117:158-65.

[10] Westhauser F, Wilkesmann S, Nawaz Q, Hohenbild F, Rehder F, Saur M, Fellenberg J, Moghaddam A, Ali MS, Peukert W, Boccaccini AR. Effect of manganese, zinc, and on the biological and bioactive properties of mesoporous nanoparticles. J Biomed Mcopper Res A. 2021 Aug; 109 (8): 1457-1467.

[11] Reible B, Schmidmaier G, Moghaddam A, Westhauser F. Insulin-Like Growth Factor-1 as a Alternative to Bone Morphogenetic Protein-7 to Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells in Vitro. Int J Mol Sci. 2018; 19 (6).

[12] Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a bone niche. Eur Cell Mater. 2012; 23:13-27.

[13] Suzuki T, Ishihara K, Migaki H, Matsuura W, Kohda A, Okumura K, Nagao M, Yamaguchi-Iwai Y, Kambe T. Zinc, ZnT5 and ZnT7, are required for the activation of cytoplasmic atases, zinc-phosphotide-requiring that are glycosylphosphatidylinositol-requiring membrane. J Biol Chem. 2005 Jan 7; 280 (1): 637-43.

[14] Ueno H, Kato M, Minagawa Y, Hirose Y, Noji H. Elucidation and control of low and high active populations of alkaline phosphatase molecules for quantitative digital bioassay. Protein Sci. 2021 Aug; 30 (8): 1628-1639.

[15] Herrera-Quintana L, Vázquez-Lorente H, Molina-López J, Gamarra-Morales Y, Martín-López JI, Planells during E. Vitamin D Status in Critically Ill with SIRS and Its Related Parameters with Circulating Zn and Nutrients ICU. Relationship. 2022 Aug 30; 14 (17): 3580.

[16] Sun R, Wang J, Feng J, Cao B. Zinc in Cognitive Impairment and Aging. Biomolecules. 2022 Jul 18; 12 (7): 1000.

[17] Veenstra TD, Benson LM, Craig TA, et al. Metal mediated ste receptor-rol DNA complex association and dissociation deter mined by electrospray ionization mass spectrometry [J]. Nat Biotechnol, 1998, 16 (3): 262-266.

[18] Hadley KB, Newman SM, Hunt JR. Dietary reduces zinc osteoclast resorption activities and markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem. 2010 Apr; 21 (4): 297-303.

[19] Zhang R, Liu X, Xiong Z, Huang Q, Yang X, Yan H, Ma J, Feng Q, Shen Z. The incorporated effects of Zn-modulatory micro/nanostructured coating in inducing osteogenesis. Artif Cells Nanomed Biotechnol. 2018; 46 (sup1): 1123-1130.

[20] Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol. 2016; 17:2 – 8.

[21] Michalski MN, Koh AJ, Weidner S, Roca H, McCauley LK. Modulation of Osteoblastic cell efferocytosis by bone marrow macrophages. J Cell Biochem. 2016; 117:2697 – 706

[22] Song X, Xue Y, Fan S, Hao J, Deng R. Lipopolysaccharide-activated macrophages regulate the osteogenic differentiation of bone marrow mesenchymal stem cells through exosomes. PeerJ. 2022; 10: e13442.

[23] Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Gryn - pas M, Alman BA. Macrophages osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015; 30:1090 – 102.

[24] Miron RJ, Bosshardt DD. OsteoMacs: key players around bone biomaterials. Biomaterials. 2016; 82:1 – 19.

[25] Toledano M, Vallecillo-Rivas M, Osorio MT, Muñoz-Soto E, Toledano-Osorio M, Vallecillo C, Toledano R, Lynch CD, Serrera-Figallo MA, Osorio R. Zn-Containing Membranes for Guided Bone Regeneration in Dentistry. Polymers (Basel). 2021 May 29; 13 (11): 1797.

[26] Guo H, Xia D, Zheng Y, Zhu Y, Liu Y, Zhou Y. A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration studies: In vitro and in vivo. Acta Biomater. 2020 Apr 1; 106:396-409.

[27] Toledano M, Vallecillo C, Gutierrez-Corrales A, Torres-Lagares D, Toledano-Osorio M, Serrera-Figallo MA. Histomorphometric Analysis of Differential Regional Bone Regeneration Induced by Distinct Dopanes. Polymers (Basel). 2022 May 19; 14 (10): 2078.

[28] Li Y, Zhang X, Dai C, Yin Y, Gong L, Pan W, Huang R, Bu Y, Liao X, Guo K, Gao F. Bioactive Three-Dimensional Graphene Oxide Foam/Polydimethylsiloxane/Zinc Silicate Scaffolds with Enhanced Osteointegration May for Bone Regeneration. ACS Biomointegration Sci Eng. 2020 11; 6 (5): 3015-3025. doi: 10.1021/acsbiomaterial. 9b01931. Epub 2020 7. PMID: 33463276.

[29] Qian G, Zhang L, Wang G, Zhao Z, Peng S, Shuai C. 3D Printed Zn-doped Mesoporous Silica-incorporated Poly-L-lactic Acid Scaffolds for Bone Repair. Int J Bioprint. 2021 Mar 10; 7 (2): 346.

[30] Chopra V, Thomas J, Sharma A, Panwar V, Kaushik S, Sharma S, Porwal K, Kulkarni C, Rajput S, Singh H, Jagavelu K, Chattopadhyay N, NanoGhosh D. Synthesis and Evaluation of a Zinc Eluting rGO/Hydroxyapatite Optimized Composite for Bone Augmentation. ACS Biomater Sci Eng. 2020 Dec 14; 6 (12): 6710-6725.

[31] Yu W, Sun TW, Qi C, Ding Z, Zhao H, Zhao S, Shi Z, Zhu YJ, Chen D, He Y. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation. Int J Nanomedicine. 2017 Mar 24; 12:2293-2306.

[32] Sun H, Zheng K, Zhou T, Boccaccini AR. Incorporation of Zinc Binary SiO 2 -CaO Mesoporous Bioactive Glass Nanoporous Enhances Anti-Inflammatory and Osteogenic Activities. Pharmaceutics. 2021 Dec 9; 13 (12): 2124.

[33] Kim D, Shim YS, An SY, Lee MJ. Role of Zinc-Doped Bioactive Glass Encapsulated with Microspherical Gelatin in Localized Supplementation for Tissue Regeneration: A Contemporary Review. Molecules. 2021 Mar 24; 26 (7): 1823.

[34] Heras C, Jiménez-Holguín J, Doadrio AL, Vallet-Regí M, Sánchez-Salcedo S, Salinas AJ. Multifunctional antibiotic- and zinc-containing mesoporous glass scaffolds to fight bone infection. Acta Biomater. 2020 Sep 15; 114:395-406.

[35] Gao K, Zhang Y, Niu J, Nie Z, Liu Q, Lv C. Zinc cell apoptosis via the Wnt-3a/β-catenin activating signaling pathway in osteosarcoma. J Orthop Surg Res. 2020 Feb 19; 15 (1): 57.

[36] He G, Nie JJ, Liu X, Ding Z, Luo P, Liu Y, Zhang BW, Wang R, Liu X, Hai Y, Chen DF. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. BioMater. 2022 May 13; 19:690-702.