Welcome to Francis Academic Press

International Journal of Frontiers in Engineering Technology, 2023, 5(2); doi: 10.25236/IJFET.2023.050203.

Simulation Design and Characteristic Research of Electromagnetic Metasurface Absorber

Author(s)

Lingbo Zhao1, Zhijiang Zhong2

Corresponding Author:
Zhijiang Zhong
Affiliation(s)

1College of Science, Donghua University, Shanghai, China

2School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China

Abstract

Electromagnetic metasurface technology is one of the most promising technologies for electromagnetic energy regulation. It is formed by an artificial periodic structure of discrete subwavelengths at the interface, allowing wavefront control and polarization control at the subwavelength scale, exhibiting a variety of special electromagnetic response capabilities, including abnormal beam bending, polarization transformation, electromagnetic wave absorption, etc. We propose a wide-angle, polarization-insensitive infrared perfect metasurface absorber made of an opaque gold ground layer, a dielectric spacer layer, and a hole-shaped gold patch on the spacer layer. The absorption spectrum of the metasurface absorber is simulated by the finite element method, and the results show that the absorber produces an absorption peak with a maximum absorption rate of 99.91% and a half-height and full width of 0.52um in the visible light band.

Keywords

metasurface; electromagnetic perfect absorption; finite element method; absorption spectrum

Cite This Paper

Lingbo Zhao, Zhijiang Zhong. Simulation Design and Characteristic Research of Electromagnetic Metasurface Absorber. International Journal of Frontiers in Engineering Technology (2023), Vol. 5, Issue 2: 11-16. https://doi.org/10.25236/IJFET.2023.050203.

References

[1] Badri, S. H., Gilarlue, M. M., SaeidNahaei, S., & Kim, J. S. (2022). Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material. Journal of Optics, 24(2), 025101.

[2] Schurig, D., Mock, J. J., Justice, 1. B., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977-980.

[3] Wang, H. L., Ma, H. F., Chen, M., Sun, S., & Cui, T. J. (2021). A Reconfigurable Multifunctional Metasurface for Full‐Space Control of Electromagnetic Waves. Advanced Functional Materials, 31(25), 2100275.

[4] Bukhari, S. S., Vardaxoglou, J., & Whittow, W. (2019). A metasurfaces review: Definitions and applications. Applied Sciences, 9(13), 2727.

[5] Chen, H. T., Taylor, A. J., & Yu, N. (2016). A review of metasurfaces: physics and applications. Reports on progress in physics, 79(7), 076401.

[6] Khorasaninejad, M., Chen, W. T., Devlin, R. C., Oh, J., Zhu, A. Y., & Capasso, F. (2016). Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352(6290), 1190-1194.

[7] Aieta, F., Genevet, P., Kats, M. A., Yu, N., Blanchard, R., Gaburro, Z., & Capasso, F. (2012). Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano letters, 12(9), 4932-4936.

[8] Nguyen, T. Q. M., Nguyen, T. K. T., Le, D. T., Truong, C. L., Vu, D. L., & Nguyen, T. Q. H. (2021). Numerical study of an ultra-broadband and wide-angle insensitive perfect metamaterial absorber in the UV–NIR region. Plasmonics, 16(5), 1583-1592.

[9] Shao, K., Shu, L., Wang, Q., Liu, M., Tian, Q., & Hu, W. (2015). Quantum Stealth Technology. J. Org. Chem. Res, 3, 66-76.

[10] Nguyen, T. Q. H., Nguyen, T. K. T., Nguyen, T. Q. M., Cao, T. N., Phan, H. L., Luong, N. M., ... & Vu, D. L. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486, 126773.

[11] Yeo, W. G., Nahar, N. K., & Sertel, K. (2013). Far‐IR multiband dual‐polarization perfect absorber for wide incident angles. Microwave and Optical Technology Letters, 55(3), 632-636.

[12] Liu, X., Starr, T., Starr, A. F., & Padilla, W. J. (2010). Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical review letters, 104(20), 207403.

[13] Ye, Y. Q., Jin, Y., & He, S. (2010). Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B, 27(3), 498-504.

[14] Christensen, P. R., Jakosky, B. M., Kieffer, H. H., Malin, M. C., McSween, H. Y., Nealson, K., ... & Ravine, M. (2004). The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110, 85-130.

[15] Liu, X., Tyler, T., Starr, T., Starr, A. F., Jokerst, N. M., & Padilla, W. J. (2011). Taming the blackbody with infrared metamaterials as selective thermal emitters. Physical review letters, 107(4), 045901.

[16] Chen, K., Adato, R., & Altug, H. (2012). Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS nano, 6(9), 7998-8006.

[17] Zhang, B., Zhao, Y., Hao, Q., Kiraly, B., Khoo, I. C., Chen, S., & Huang, T. J. (2011). Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Optics express, 19(16), 15221-15228.

[18] Tao, H., Bingham, C. M., Pilon, D., Fan, K., Strikwerda, A. C., Shrekenhamer, D. & Averitt, R. D. (2010). A dual band terahertz metamaterial absorber. Journal of physics D: Applied physics, 43(22), 225102.

[19] Yeo, W. G., Nahar, N. K., & Sertel, K. (2013). Far‐IR multiband dual‐polarization perfect absorber for wide incident angles. Microwave and Optical Technology Letters, 55(3), 632-636.

[20] Qu, C., Ma, S., Hao, J., Qiu, M., Li, X., Xiao, S. & Zhou, L. (2015). Tailor the functionalities of metasurfaces based on a complete phase diagram. Physical review letters, 115(23), 235503.

[21] Ye, Y. Q., Jin, Y., & He, S. (2010). Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B, 27(3), 498-504.

[22] Mason, J. A., Smith, S., & Wasserman, D. J. A. P. L. (2011). Strong absorption and selective thermal emission from a midinfrared metamaterial. Applied Physics Letters, 98(24), 241105.

[23] Devarapu, G. C. R., & Foteinopoulou, S. (2012). Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity. Optics express, 20(12), 13040-13054.

[24] Dai, W., Yap, D., & Chen, G. (2012). Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids. Optics Express, 20(104), A519-A529.

[25] Huang, Y., Kaj, K., Chen, C., Yang, Z., Ul Haque, S. R., Zhang, Y. & Zhang, X. (2022). Broadband terahertz silicon membrane metasurface absorber. ACS Photonics, 9(4), 1150-1156.