Academic Journal of Materials & Chemistry, 2025, 6(1); doi: 10.25236/AJMC.2025.060105.
Xiyan Zhu, Fei Li, Pei Jiang, Xinru Liu
Hunan University of Science and Technology, Xiangtan, China
This paper successfully synthesized NaGdF4:18%Yb3+/2%Er3+/x%Ca2+@NaYF4 upconversion nanoparticles (UCNPs) with strong visible fluorescence using a solvothermal method. The upconversion luminescence intensity can be regulated by Ca2+ doping. Under 980 nm infrared excitation (at room temperature), the luminescence intensity gradually increases as the Ca2+ doping concentration increases from 0 mol% to 30 mol%. The intensity reaches its maximum at a doping concentration of 30 mol%, and then decreases gradually. Fluorescence spectra indicate that the emissions originate from two green light peaks at 540 nm and 520 nm. Transmission electron microscopy (TEM) was used to characterize the morphology of the samples, revealing that the synthesized NaGdF4:18%Yb3+/2%Er3+/x%Ca2+ @NaYF4 upconversion nanocrystals have a hexagonal phase, uniform morphology, good particle dispersion, and an average particle size of approximately 60 nm. Based on these findings, nanocrystals with a 30 mol% doping concentration were selected for further processing and coating to enhance the luminescence intensity.
Upconversion luminescence; Core shell nanocrystals; Ca2+doping; coating
Xiyan Zhu, Fei Li, Pei Jiang, Xinru Liu. Ca-Doped Nanocrystals for Upconversion Luminescence Modulation and Their Application in Fluorescent Microspheres. Academic Journal of Materials & Chemistry (2025), Vol. 6, Issue 1: 44-51. https://doi.org/10.25236/AJMC.2025.060105.
[1] Halsted, R. E., Apple, E. F., & Prener, J. S. (1959). Two-State optical excitation in sulfide phosphors. Physical Review Letters, 2(10), 420.
[2] Auzel, F. E. (1973). Materials and devices using double-pumped-phosphors with energy transfer. Proceedings of the IEEE, 61(6), 758-786.
[3] Liu, Y., Tu, D., Zhu, H., Li, R., Luo, W., & Chen, X. (2010). A strategy to achieve efficient dual‐mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Advanced Materials, 22(30), 3266-3271.
[4] Peng, H. Y., Ding, B. B., Ma, Y. C., Sun, S. Q., Tao, W., Guo, Y. C., ... & Qian, H. S. (2015). Sequential growth of sandwiched NaYF4: Yb/Er@ NaYF4: Yb@NaNdF4: Yb core–shell–shell nanoparticles for photodynamic therapy. Applied Surface Science, 357, 2408-2414.
[5] Ansari, A. A., Parchur, A. K., Nazeeruddin, M. K., & Tavakoli, M. M. (2021). Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coordination Chemistry Reviews, 444, 214040.
[6] Ding, B. B., Liu, K., Zhang, F., Wang, Y., Cheng, S., Lu, Y., & Qian, H. S. (2015). Facile synthesis of β-NaGdF4: Yb/Er@ CaF2 nanoparticles with enhanced upconversion fluorescence and stability via a sequential growth process. CrystEngComm, 17(31), 5900-5905.
[7] Hou, S., Zou, Y., Liu, X., Yu, X., Liu, B., Sun, X., & Xing, Y. (2011). CaF2 and CaF2: Ln 3+(Ln= Er, Nd, Yb) hierarchical nanoflowers: hydrothermal synthesis and luminescent properties. CrystEngComm, 13(3), 835-840.
[8] Liang, M. Y., Zhao, B., Xiong, Y., Chen, W. X., Huo, J. Z., Zhang, F., ... & Li, Y. (2019). A “turn-on” sensor based on MnO 2 coated UCNPs for detection of alkaline phosphatase and ascorbic acid. Dalton Transactions, 48(43), 16199-16210.
[9] Su, Y., Liu, X., Lei, P., Xu, X., Dong, L., Guo, X., ... & Zhang, H. (2016). Core–shell–shell heterostructures of α-NaLuF4: Yb/Er@ NaLuF4: Yb@ MF2 (M= Ca, Sr, Ba) with remarkably enhanced upconversion luminescence. Dalton Transactions, 45(27), 11129-11136.
[10] Zhao, J., Zhu, Y. J., Wu, J., & Chen, F. (2015). Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2: Yb3+/Er3+ nanocrystals. Journal of colloid and interface science, 440, 39-45.
[11] Ma, C., Xu, X., Wang, F., Zhou, Z., Wen, S., Liu, D., ... & Jin, D. (2016). Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles. The journal of physical chemistry letters, 7(16), 3252-3258.
[12] Wen, S., Li, D., Liu, Y., Chen, C., Wang, F., Zhou, J., ... & Jin, D. (2022). Power-dependent optimal concentrations of Tm3+ and Yb3+ in upconversion nanoparticles. The Journal of Physical Chemistry Letters, 13(23), 5316-5323.
[13] Gao, W., Han, S., Wang, B., Sun, Z., Lu, Y., Han, Q., ... & Dong, J. (2022). Single-layer gold nanoparticle film enhances the upconversion luminescence of a single NaYbF4: 2% Er3+ microdisk. Journal of Alloys and Compounds, 900, 163493.
[14] Pandurangappa, C., Lakshminarasappa, B. N., & Nagabhushana, B. M. (2010). Synthesis and characterization of CaF2 nanocrystals. Journal of alloys and compounds, 489(2), 592-595.
[15] Wang, S., Xi, W., Wang, Z., Zhao, H., Zhao, L., Fang, J., ... & Sun, L. (2020). Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy. Journal of Materials Chemistry B, 8(27), 5883-5891.
[16] Zhao, J., Hu, Y., wei Lin, S., Resch-Genger, U., Zhang, R., Wen, J., ... & Ou, J. (2020). Enhanced luminescence intensity of near-infrared-sensitized upconversion nanoparticles via Ca2+ doping for a nitric oxide release platform. Journal of Materials Chemistry B, 8(30), 6481-6489.
[17] Lin, M., Cheng, S., Wu, X., Zhan, S., & Liu, Y. (2021). Optical temperature sensing based on upconversion nanoparticles with enhanced sensitivity via dielectric superlensing modulation. Journal of Materials Science, 56, 10438-10448.
[18] Li, D., Shao, Q., Dong, Y., & Jiang, J. (2014). Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4: Yb3+, Er3+ nanoparticles. The Journal of Physical Chemistry C, 118(39), 22807-22813.
[19] Lu, E., Pichaandi, J., Arnett, L. P., Tong, L., & Winnik, M. A. (2017). Influence of Lu3+ doping on the crystal structure of uniform small (5 and 13 nm) NaLnF4 upconverting nanocrystals. The Journal of Physical Chemistry C, 121(33), 18178-18185.
[20] Li, Z., Lv, S., Wang, Y., Chen, S., & Liu, Z. (2015). Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. Journal of the American Chemical Society, 137(9), 3421-3427.
[21] Jiang, T., Qin, W., & Zhao, D. (2012). Size-dependent upconversion luminescence in CaF2: Yb3+, Tm3+ nanocrystals. Materials Letters, 74, 54-57.
[22] Chan, E. M., Han, G., Goldberg, J. D., Gargas, D. J., Ostrowski, A. D., Schuck, P. J., ... & Milliron, D. J. (2012). Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano letters, 12(7), 3839-3845.
[23] Fischer, S., Mehlenbacher, R. D., Lay, A., Siefe, C., Alivisatos, A. P., & Dionne, J. A. (2019). Small alkaline-earth-based core/shell nanoparticles for efficient upconversion. Nano letters, 19(6), 3878-3885.
[24] Lei, L., Liu, E., Wang, Y., Hua, Y., Zhang, J., Chen, J., ... & Xu, S. (2021). Amplifying upconversion by engineering interfacial density of state in sub-10 nm colloidal core/shell fluoride nanoparticles. Nano Letters, 21(24), 10222-10229.
[25] Lei, L., Chen, D., Huang, P., Xu, J., Zhang, R., & Wang, Y. (2013). Modifying the size and uniformity of upconversion Yb/Er: NaGdF4 nanocrystals through alkaline-earth doping. Nanoscale, 5(22), 11298-11305.
[26] Pedroni, M., Piccinelli, F., Passuello, T., Giarola, M., Mariotto, G., Polizzi, S., ... & Speghini, A. (2011). Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: toward efficient materials with near infrared-to-near infrared upconversion emission. Nanoscale, 3(4), 1456-1460.
[27] Quintanilla, M., Hemmer, E., Marques-Hueso, J., Rohani, S., Lucchini, G., Wang, M., ... & Vetrone, F. (2022). Cubic versus hexagonal–phase, size and morphology effects on the photoluminescence quantum yield of NaGdF4: Er3+/Yb3+ upconverting nanoparticles. Nanoscale, 14(4), 1492-1504.
[28] Zhou, Y., Cheng, Y., Xu, J., Lin, H., & Wang, Y. (2021). Thermo-enhanced upconversion luminescence in inert-core/active-shell UCNPs: the inert core matters. Nanoscale, 13(13), 6569-6576.
[29] Liu, Q., Zhang, Y., Peng, C. S., Yang, T., Joubert, L. M., & Chu, S. (2018). Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nature photonics, 12(9), 548-553.
[30] Dong, B., Wu, X., Zhan, S., Nie, G., Wu, S., Cheng, S., ... & Liu, Y. (2020). Observation of high efficient photothermal conversion of sub-10nm Au nanoparticles coated on upconversion nanoparticles. Optical Materials, 101, 109665.
[31] Yu, X., Xia, Q., Liu, P., & Xu, Y. (2023). In-situ confinement of ultra-small NaYF4: Yb3+/Er3+ UCNPs as multifunctional ratiometric thermometer and optical heater. Optical Materials, 142, 114069.
[32] Cao, C., Qin, W., Zhang, J., Wang, Y., Wang, G., Wei, G., ... & Jin, L. (2008). Up-conversion white light of Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors. Optics Communications, 281(6), 1716-1719.
[33] Zhang, Y., Xu, S., Li, X., Zhang, J., Sun, J., Tong, L., ... & Chen, B. (2018). Improved LRET-based detection characters of Cu2+ using sandwich structured NaYF4@NaYF4:Er3+/Yb3+@NaYF4 nanoparticles as energy donor. Sensors and Actuators B: Chemical, 257, 829-838.