Welcome to Francis Academic Press

Academic Journal of Humanities & Social Sciences, 2025, 8(7); doi: 10.25236/AJHSS.2025.080707.

Integration of Runge-Kutta 6(5) Numerical Methods in Modelling Acoustic Patterns of Yi Tribe Funeral Music in China

Author(s)

Miao Wang1, Yongcheng Gu2, Yucheng Shen3

Corresponding Author:
Yucheng Shen
Affiliation(s)

1Faculty of Education, Shinawatra University, Pathum Thani, Thailand

2Institute of Music, Theater and Choreography, Russian State Pedagogical University, St. Petersburg, Russia

3Teacher Education College, University of Idaho, Moscow, USA

Abstract

This study investigates the integration of Runge-Kutta 6(5) numerical methods to model the acoustic patterns of Yi tribe funeral music in Liangshan, China. By analysing the temporal and spectral characteristics of mourning songs, the research employs high-order numerical techniques to simulate the dynamic evolution of pitch, rhythm, and timbre. Combining ethnomusicological fieldwork with computational modelling, the study captures the cultural nuances embedded in the music. Results show that the Runge-Kutta 6(5) method effectively reproduces complex acoustic structures, providing insights into the preservation and digital reconstruction of Yi musical heritage. This approach bridges traditional musicology with advanced mathematical modelling, offering a novel framework for cultural analysis. The findings contribute to the discourse on applying computational methods to intangible cultural heritage.

Keywords

Acoustic Modelling, Ethnomusicology, Numerical Methods, Runge-Kutta 6(5), Yi Tribe Funeral Music

Cite This Paper

Miao Wang, Yongcheng Gu, Yucheng Shen. Integration of Runge-Kutta 6(5) Numerical Methods in Modelling Acoustic Patterns of Yi Tribe Funeral Music in China. Academic Journal of Humanities & Social Sciences (2025), Vol. 8, Issue 7: 53-59. https://doi.org/10.25236/AJHSS.2025.080707.

References

[1] Li J H. A study of Liangshan Yi mourning songs under the perspective of applied ethnomusicology. Journal of Ethnomusicology, 2025, 5: 444445.

[2] Song A Y. Musical composition and cultural functions of Liangshan Yi funeral rituals. Chinese Musicology, 2024. Available at: https://www.cnki.net.

[3] Wang R. Musical characteristics and singing techniques of the Yi-style song “Following Amei’s Mountain Song.” Modern Music, 2025, 1: 69-71.

[4] Shen Y C, Lin C L, Simos T E, Tsitouras C. Runge-Kutta pairs of orders 6(5) with coefficients trained to perform best on classical orbits. Mathematics, 2021, 9: 1342.

[5] Butcher J C. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons: Chichester, UK, 2003.

[6] Tsitouras C, Papakostas S N. Cheap error estimation for Runge-Kutta pairs. SIAM J. Sci. Comput., 1999, 20: 2067-2088.

[7] Nettl B. The Study of Ethnomusicology: Thirty-Three Discussions. University of Illinois Press, 2015.

[8] Runge C. Ueber die numerische Auflösung von Differentialgleichungen. Math. Ann., 1895, 46: 167-178.

[9] Kutta W. Beitrag zur näherungsweisen Integration von Differentialgleichungen. Z. Math. Phys., 1901, 46: 435-453.

[10] Fehlberg E. Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle. Computing, 1969, 4: 93-106.

[11] Dormand J R, Prince P J. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math., 1980, 6: 19-26.

[12] Prince P J, Dormand J R. High order embedded Runge-Kutta formulae. J. Comput. Appl. Math., 1981, 7: 67-75.

[13] Tsitouras C. A parameter study of explicit Runge-Kutta pairs of orders 6(5). Appl. Math. Lett., 1998, 11: 65-69.

[14] Famelis I T, Papakostas S N, Tsitouras C. Symbolic derivation of Runge-Kutta order conditions. J. Symbolic Comput., 2004, 37: 311-327.

[15] Dormand J R, Lockyer M A, McGorrigan N E, Prince P J. Global error estimation with Runge-Kutta triples. Comput. Math. Appl., 1989, 18: 835-846.

[16] Verner J H. Some Runge-Kutta formula pairs. SIAM J. Numer. Anal., 1991, 28: 496-511.

[17] Yang M. Chinese traditional music in contemporary contexts. Ethnomusicology, 2018, 62: 23-45.

[18] Liu C, Hsu C W, Tsitouras C, Simos T E. Hybrid Numerov-type methods with coefficients trained to perform better on classical orbits. Bull. Malays. Math. Sci. Soc., 2019, 42: 2139-2154.