Welcome to Francis Academic Press

Frontiers in Educational Research, 2025, 8(10); doi: 10.25236/FER.2025.081007.

AI-Enabled Teaching Reform of a Millimeter-Wave Amplifier Design Course: Accelerating Passive Synthesis with RFIC-GPT for a 30 GHz Noise-Cancelling LNA Case Study

Author(s)

Benqing Guo1, Jing Gong2

Corresponding Author:
​Benqing Guo
Affiliation(s)

1Microelectronics School, Chengdu University of Information Technology, Chengdu, China

2West China Hospital, Sichuan University, Chengdu, China

Abstract

This paper reports a teaching reform for the micro major course “Millimeter Wave Amplifier Design” within the “Advanced Chip Design and Innovation” track. Confronting limited contact hours and the cross-disciplinary nature of mmWave IC design, we integrate an RFIC-GPT tool to automate the transformer/inductor synthesis, shortening passive layout iteration and lowering entry barriers. A representative 30 GHz transformer-coupled, noise-canceling LNA serves as the anchor case to link theoretical trade-offs with a design workflow (specification input, schematic design, AI-assisted passive layout generation, EM extraction, final co-simulation). Past semesters of practice show ~25% average reduction in passive design time and sustained student engagement. Results evidence AI augmented exemplars effectively enhancing IC talent cultivation.

Keywords

Millimeter-Wave Education, Low-Noise Amplifier, AI-Assisted EDA, Passive Synthesis, Noise Cancellation, Practical Teaching Reform, Micro-Major Curriculum

Cite This Paper

Benqing Guo, Jing Gong. AI-Enabled Teaching Reform of a Millimeter-Wave Amplifier Design Course: Accelerating Passive Synthesis with RFIC-GPT for a 30 GHz Noise-Cancelling LNA Case Study. Frontiers in Educational Research (2025), Vol. 8, Issue 10: 44-52. https://doi.org/10.25236/FER.2025.081007.

References

[1] Guo B. A 0.2–6 GHz 65 nm CMOS Active-Feedback LNA With Threefold Balun-Error Correction and Implicit Post-Distortion Technique[C]. 2025 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Francisco, CA, USA, 2025: 451–454. 

[2] Razavi B. RF Microelectronics[M]. Second edition, Prentice Hall, 2012.

[3] Liu H, Guo B, Han Y, Wu J. An Integrated LNA-Phase Shifter in 65 nm CMOS for Ka-Band Phased-Array Receivers[J]. International Journal of Circuit Theory and Applications, 2024, 52(5): 2126-2145.

[4] Andrews C, Molnar A C. A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface[J]. IEEE Journal of Solid-State Circuits, 2010, 45(12): 2696-2708.

[5] Guo B, Wang X, Chen H. A 28 GHz Front-End for Phased Array Receivers in 180 nm CMOS Process[J]. Modern Physics Letters B, 2020, 34(supp01): 2150017.

[6] Guo B, Chen H, Wang X, Chen J, Xie X, Li Y. A 60 GHz Balun Low-Noise Amplifier in 28-nm CMOS for Millimeter-Wave Communication[J]. Modern Physics Letters B, 2019, 33(32): 1950396.

[7] Guo B, Shi Y, Wang Y, Wang H, Wang H, Wang T. Bridging Theory and Practice in CMOS Receiver Frontend Design: A Comprehensive Approach for Postgraduate Education[J]. Frontiers in Educational Research, 2025, 8(7): 112-119.

[8] Guo B, Shi Y, Wang Y, Wang H, Wang H, Wang T. Enhancing Student Engagement in RF Integrated Circuit Course through Simulation Practices Using Cadence and EMX[J]. Frontiers in Educational Research, 2025, 8(5): 177-183.

[9] Mirhoseini A, Goldie A, Yazgan M, et al. A graph placement methodology for fast chip design[J]. Nature, 2021, 594(7862): 207–212.

[10] www.icprophet.com

[11] Guo B, Chen J. A mm-Wave Two-Stage CMOS LNA Using Noise Cancelling and Post-Distortion Techniques[C]. 2024 19th European Microwave Integrated Circuits Conference (EuMIC), 2024: 407-410.

[12] Guo B, Chen J, Chen H, Wang X. A 0.1-1.4 GHz Inductorless Low-Noise Amplifier With 13 dBm IIP3 and 24 dBm IIP2 in 180 nm CMOS[J]. Modern Physics Letters B, 2018, 32(02): 1850009.

[13] Wang H, Guo B, Wang Y, Fan R, Sun L. A Baseband-Noise-Cancelling Mixer-First CMOS Receiver Frontend Attaining 220 MHz IF Bandwidth With Positive-Capacitive-Feedback TIA[J]. IEEE Access, 2023, 11: 26320-26328.

[14] Guo B, Wang H, Li L, Zhou W. A 65 nm CMOS Current-Mode Receiver Frontend With Frequency-Translational Noise Cancelation and 425 MHz IF Bandwidth[C]. 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2023: 21-24.

[15] Pini G, Manstretta D, Castello R. Analysis and Design of a 260-MHz RF Bandwidth +22-dBm OOB-IIP3 Mixer-First Receiver With Third-Order Current-Mode Filtering TIA[J]. IEEE Journal of Solid-State Circuits, 2020, 55(7): 1819-1829.

[16] Kargaran E, Guo B, Manstretta D, Castello R. A Sub-1-V, 350-μW, 6.5-dB Integrated NF Low-IF Receiver Front-End for IoT in 28-nm CMOS[J]. IEEE Solid-State Circuits Letters, 2019, 2(4): 29-32.

[17] Guo B, Chen H, Wang X, Li L, Zhou W. A Wideband Receiver Front-End With Low Noise and High Linearity by Exploiting Reconfigurable Dual Paths in 180 nm CMOS[J]. Modern Physics Letters B, 2021, 35(12): 2150210.

[18] Fabiano I, Sosio M, Liscidini A, Castello R. SAW-Less Analog Front-End Receivers for TDD and FDD[J]. IEEE Journal of Solid-State Circuits, 2013, 48(12): 3067-3079.

[19] Thijssen B J, Klumperink E A M, Quinlan P, Nauta B. 2.4-GHz Highly Selective IoT Receiver Front End With Power Optimized LNTA, Frequency Divider, and Baseband Analog FIR Filter[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2007-2017.

[20] Guo B, Wang H, Wang Y, Li K, Li L, Zhou W. A Mixer-First Receiver Frontend With Resistive-Feedback Baseband Achieving 200 MHz IF Bandwidth in 65 nm CMOS[C]. 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2022: 31-34.

[21] Guo B, Gong J, Wang Y, Wu J. A 0.2-3.3 GHz 2.4 dB NF 45 dB Gain CMOS Current-Mode Receiver Front-End[J]. Modern Physics Letters B, 2020, 34(22): 2050226.

[22] Blaakmeer S C, Klumperink E A M, Leenaerts D M W, Nauta B. Wideband Balun-LNA With Simultaneous Output Balancing Noise-Canceling and Distortion-Canceling[J]. IEEE Journal of Solid-State Circuits, 2008, 43(6): 1341-1350.

[23] Guo B, Chen J, Li L, Jin H, Yang G. A Wideband Noise-Canceling CMOS LNA With Enhanced Linearity by Using Complementary nMOS and pMOS Configurations[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5): 1331-1344.

[24] Im D, Nam I, Kim H T, Lee K. A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 686-698.

[25] Guo B, Yang G, An S. A Wideband Noise-Canceling CMOS LNA Using Cross-Coupled Feedback and Bulk Effect[J]. Frequenz, 2014, 68(5-6): 243-249.

[26] Guo B, Gong J, Wang Y. A Wideband Differential Linear Low Noise Transconductance Amplifier With Active-Combiner Feedback in Complementary MGTR Configurations[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(1): 224-237.

[27] Guo B, Li X. A 1.6-9.7 GHz CMOS LNA Linearized by Post Distortion Technique[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(11): 608-610.

[28] Guo B, Wang H, Yang G. A Wideband Merged CMOS Active Mixer Exploiting Noise Cancellation and Linearity Enhancement[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(9): 2084-2091.

[29] Guo B, et al. Low-Frequency Noise in CMOS Switched-gm Mixers: A Quasi-Analytical Model[J]. IEEE Access, 2020, 8: 191219-191230.

[30] Guo B, Chen J, Wang X, Chen H. An Inductorless Active Mixer Using Stacked nMOS/pMOS Configuration and LO Shaping Technique[J]. Modern Physics Letters B, 2018, 32(11): 1850129.

[31] Bhat A N, van der Zee R, Finocchiaro S, Dantoni F, Nauta B. A Baseband-Matching-Resistor Noise-Canceling Receiver Architecture to Increase In-Band Linearity Achieving 175MHz TIA Bandwidth With a 3-Stage Inverter-Only OpAmp[C]. 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019: 155-158.

[32] Fan R, Guo B, Wang H, Wang H, Chen J. A Broadband Single-Ended Active-Feedforward-Noise-Canceling LNA With IP2 Enhancement in Stacked n/pMOS Configurations[J]. Microelectronics Journal, 2024, 149: 106257.

[33] Zhang H, Sánchez-Sinencio E. Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(1): 22-36.

[34] Fan R, Guo B, Chen J. A 1-11 GHz Balun CMOS LNA Achieving 1.9-dB NF Gain-Error< 0.15 dB and Phase-Error< 0.9°[C]. 2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS), 2024: 382-386.

[35] Wu J, Guo B, Wang H, Liu H, Li L, Zhou W. A 2.4 GHz 87μW Low-Noise Amplifier in 65 nm CMOS for IoT Applications[J]. Modern Physics Letters B, 2021, 35(32): 2150485.

[36] Liao X, Guo B, Wang H. A 14.5 GHz Dual-Core Noise-Circulating CMOS VCO With Tripler Transformer Coupling, Achieving -123.6 dBc/Hz Phase Noise at 1MHz Offset[C]. 2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS), 2024: 377-381.

[37] Guo B, Yang G, Bin X. A differential CMOS common-gate LNA linearized by cross-coupled post distortion technique[J]. Frequenz, 2014, 68(5–6): 235–241.

[38] Guo B, Wang H, Chen J, Deilamsalehi MM. A CMOS low-noise active mixer with enhanced linearity and isolation by exploiting capacitive neutralization technique[J]. Modern Physics Letters B, 2019, 33(18): 1950204.

[39] Guo B, Wang X, Chen H, Chen J. A 0.5–6.5 GHz 3.9-dB NF 7.2-mW active down-conversion mixer in 65 nm CMOS[J]. Modern Physics Letters B, 2018, 32(23): 1850278.

[40] Yang C, Guo B, Wang H, Wang Y, Chen J. A 30-39 GHz 3.1-3.4 NF 6.6 dBm IIP3 CMOS Low-Noise Amplifier With Post-Linearization Technique[C]. 2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS), 2024: 372-376.

[41] Chen J, Guo B, Zhao F, Wang Y, Wen G. A low-voltage high-swing Colpitts VCO with inherent tapped capacitors based dynamic body bias technique[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017: 1–4.

[42] Guo B, Chen J, Wang Y, Jin H, Yang G. A Wideband Complementary Noise Cancelling CMOS LNA[C]. 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2016: 142-145.

[43] Guo B, Gong J. A Dual-Band Low-Noise CMOS Switched-Transconductance Mixer With Current-Source Switch Driven by Sinusoidal LO Signals[C]. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2021: 741-744.